Preferred Language
Articles
/
ijcpe-894
Artificial Intelligent Models for Detection and Prediction of Lost Circulation Events: A Review
...Show More Authors

Lost circulation or losses in drilling fluid is one of the most important problems in the oil and gas industry, and it appeared at the beginning of this industry, which caused many problems during the drilling process, which may lead to closing the well and stopping the drilling process. The drilling muds are relatively expensive, especially the muds that contain oil-based mud or that contain special additives, so it is not economically beneficial to waste and lose these muds. The treatment of drilling fluid losses is also somewhat expensive as a result of the wasted time that it caused, as well as the high cost of materials used in the treatment such as heavy materials, cement, and others. The best way to deal with drilling fluid losses is to prevent them. Drilling fluid loss is a complex problem that is difficult to predict using simple and traditional methods. Artificial intelligence represents a modern and accurate technology for solving complex problems such as drilling fluid loss. Artificial intelligence through supervised machine learning provides the possibility of predicting these losses before they occur based on field data such as drilling fluid properties, drilling parameters, rock properties, and geomechanical parameters that are related to the loss of circulation of the wells suffered from losses problem located in the same area.

   In this paper, several supervised machine learning models have been reviewed that were used for detecting and predicting of loss of drilling fluids during the drilling process. The paper provides an inclusive review of drilling fluid prediction and detection from simplest to more complected intelligent models.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Feb 03 2019
Journal Name
Iraqi Journal Of Physics
Change detection of remotely sensed image using NDVI subtractive and classification methods.
...Show More Authors

Change detection is a technology ascertaining the changes of
specific features within a certain time Interval. The use of remotely
sensed image to detect changes in land use and land cover is widely
preferred over other conventional survey techniques because this
method is very efficient for assessing the change or degrading trends
of a region. In this research two remotely sensed image of Baghdad
city gathered by landsat -7and landsat -8 ETM+ for two time period
2000 and 2014 have been used to detect the most important changes.
Registration and rectification the two original images are the first
preprocessing steps was applied in this paper. Change detection using
NDVI subtractive has been computed, subtrac

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Dec 28 2020
Journal Name
The Iraqi Journal Of Veterinary Medicine
Serological and Molecular Phylogenetic Detection of Coxiella burnetii in Lactating Cows, Iraq
...Show More Authors

This study is carried out to investigate the prevalence of Coxiella burnetii (C. burnetii) infections in cattle using an enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) assay targeting IS1111A transposase gene. A total of 130 lactating cows were randomly selected from different areas in Wasit province, Iraq and subjected to blood and milk sampling during the period extended between November 2018 and May 2019. ELISA and PCR tests revealed that 16.15% and 10% of the animals studied were respectively positive. Significant correlations (P<0.05) were detected between the positive results and clinical data. Two positive PCR products were analyzed phylogenetically, named as C. burnetii IQ-No.5 and C. burnet

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (3)
Scopus Crossref
Publication Date
Sat Mar 08 2025
Journal Name
Fusion: Practice And Applications
Fast Numeric Sign Detection Using Adaptive Thresholding and Geometry of Optimized Fingers
...Show More Authors

A strong sign language recognition system can break down the barriers that separate hearing and speaking members of society from speechless members. A novel fast recognition system with low computational cost for digital American Sign Language (ASL) is introduced in this research. Different image processing techniques are used to optimize and extract the shape of the hand fingers in each sign. The feature extraction stage includes a determination of the optimal threshold based on statistical bases and then recognizing the gap area in the zero sign and calculating the heights of each finger in the other digits. The classification stage depends on the gap area in the zero signs and the number of opened fingers in the other signs as well as

... Show More
Scopus
Publication Date
Sun Mar 26 2017
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
Detection and isolation of flavonoids from Calendula officinalis (F.Asteraceae) cultivated in Iraq
...Show More Authors

Calendula officinalis L. (Asteraceae) known as marigold is known to have several pharmacological activities and used for the treatment of several diseases as measles, jaundice, constipation and several inflammations. Marigold flowers contain several chemical constituents mainly flavonoids, triterpenoids and essential oil. In this study marigold flowers cultivated in Iraq had been investigated for its flavonoids content. The study revealed the presence of quercetin and kaempferol glycosides and the absence of myricetin glycosides. The flowers were extracted with ethanol 70% fractionated with different solvent and the flavonoids were isolated by preparative HPLC. The isolated flavonoids were identified by measuring melting points, UV, IR,

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jan 01 2019
Journal Name
International Journal Of Civil Engineering And Technology
PREDICTION OF BEARING CAPACITY, ANGLE OF INTERNAL FRICTION, COHESION, AND PLASTICITY INDEX USING ANN (CASE STUDY OF BAGHDAD, IRAQ)
...Show More Authors

In the last few years, the use of artificial neural network analysis has increased, particularly, in geotechnical engineering problems and has demonstrated some success. In this research, artificial neural network analysis endeavors to predict the relationship between physical and mechanical properties of Baghdad soil by making different trials between standard penetration test, liquid limit, plastic limit, plasticity index, cohesion, angle of internal friction, and bearing capacity. The analysis revealed that the changes in natural water content and plastic limit have a great effect on the cohesion of soil and the angle of internal friction, respectively. . On the other hand, the liquid limit has a great impact on the bearing capacity and

... Show More
Publication Date
Tue Jan 01 2019
Journal Name
International Journal Of Civil Engineering And Technology
PREDICTION OF BEARING CAPACITY, ANGLE OF INTERNAL FRICTION, COHESION, AND PLASTICITY INDEX USING ANN (CASE STUDY OF BAGHDAD, IRAQ).
...Show More Authors

In the last few years, the use of artificial neural network analysis has increased, particularly, in geotechnical engineering problems and has demonstrated some success. In this research, artificial neural network analysis endeavors to predict the relationship between physical and mechanical properties of Baghdad soil by making different trials between standard penetration test, liquid limit, plastic limit, plasticity index, cohesion, angle of internal friction, and bearing capacity. The analysis revealed that the changes in natural water content and plastic limit have a great effect on the cohesion of soil and the angle of internal friction, respectively. . On the other hand, the liquid limit has a great impact on the bearing capacity and

... Show More
View Publication
Publication Date
Tue Jan 01 2019
Journal Name
International Journal Of Civil Engineering And Technology
Prediction of bearing capacity, angle of internal friction, cohesion, and plasticity index using ANN (case study of Baghdad, Iraq)
...Show More Authors

In the last few years, the use of artificial neural network analysis has increased, particularly, in geotechnical engineering problems and has demonstrated some success. In this research, artificial neural network analysis endeavors to predict the relationship between physical and mechanical properties of Baghdad soil by making different trials between standard penetration test, liquid limit, plastic limit, plasticity index, cohesion, angle of internal friction, and bearing capacity. The analysis revealed that the changes in natural water content and plastic limit have a great effect on the cohesion of soil and the angle of internal friction, respectively. . On the other hand, the liquid limit has a great impact on the bearing capacity and

... Show More
Scopus (8)
Scopus
Publication Date
Tue Oct 26 2021
Journal Name
Remote Sensing Technologies And Applications In Urban Environments Vi
DTM Extraction and building detection in DSMs having large holes
...Show More Authors

View Publication
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Dec 28 2021
Journal Name
2021 2nd Information Technology To Enhance E-learning And Other Application (it-ela)
Pedestrian and Objects Detection by Using Learning Complexity-Aware Cascades
...Show More Authors

View Publication Preview PDF
Scopus (7)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Tue Jun 23 2020
Journal Name
Baghdad Science Journal
Anomaly Detection Approach Based on Deep Neural Network and Dropout
...Show More Authors

   Regarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss funct

... Show More
View Publication Preview PDF
Scopus (25)
Crossref (11)
Scopus Clarivate Crossref