The disposal of textile effluents to the surface water bodies represents the critical issue especially these effluents can have negative impacts on such bodies due to the presence of dyes in their composition. Biological remediation methods like constructed wetlands are more cost-effective and environmental friendly technique in comparison with traditional methods. The ability of vertical subsurface flow constructed wetlands units for treating of simulated wastewater polluted with Congo red dye has been studied in this work. The units were packed with waterworks sludge bed that either be unplanted or planted with Phragmites australis and Typha domingensis. The efficacy of present units was evaluated by monitoring of DO, Temperature, COD and dye concentration in the effluents under the variation of detention time (1-5 day) and dye concentration (10-40 mg/L). The maximum removal of dye and COD were 98 and 82% respectively for 10 mg/L of Congo red dye after five-day hydraulic retention time (HRT). The results have shown that the removal of COD and dye concentration significantly increased with higher contact time and lower dye concentration. The values of monitored parameters adopted to evaluate the wastewater quality (i.e. DO, COD and Congo red dye) are satisfied the requirements of irrigation water. The dye concentration variation in the effluent with contact time was formulated efficiently by Grau kinetic model. Functional groups (specified by FT-IR analysis) have a remarkable role in the entrapment of dye on the waterworks sludge bed.
Porosity is important because it reflects the presence of oil reserves. Hence, the number of underground reserves and a direct influence on the essential petrophysical parameters, such as permeability and saturation, are related to connected pores. Also, the selection of perforation interval and recommended drilling additional infill wells. For the estimation two distinct methods are used to obtain the results: the first method is based on conventional equations that utilize porosity logs. In contrast, the second approach relies on statistical methods based on making matrices dependent on rock and fluid composition and solving the equations (matrices) instantaneously. In which records have entered as equations, and the matrix is sol
... Show MoreSingle-input Multiple-output Signals Third-order Active-R Filter for different Circuit Merit Factor Q Configuration is proposed. This paper discusses a new configuration to realize third-order low pass, band pass and high pass. The presented circuit uses Single-input Multiple-output signals, OP-AMP and passive components. This filter is useful for high frequency operation, monolithic IC implementation and it is easy to design .This circuit gives three filter functions low-pass, high-pass and band-pass. This filter circuit can be used for different merit factor (Q) with high pass band gain. This gives better stop-band attenuation and sharper cut-off at the edge of the pass-band. Thus the response shows wider pass-band. The Ideal value of thi
... Show MoreThe development of information systems in recent years has contributed to various methods of gathering information to evaluate IS performance. The most common approach used to collect information is called the survey system. This method, however, suffers one major drawback. The decision makers consume considerable time to transform data from survey sheets to analytical programs. As such, this paper proposes a method called ‘survey algorithm based on R programming language’ or SABR, for data transformation from the survey sheets inside R environments by treating the arrangement of data as a relational format. R and Relational data format provide excellent opportunity to manage and analyse the accumulated data. Moreover, a survey syste
... Show MoreEngineering project assessment at Al-Muthana Airport in Baghdad, Iraq, has been studied using a 3D electrical resistivity imaging survey. The site investigation is crucial for assessing the future of the region's infrastructures since it reveals the location of buried facilities or weak zones below the surface and measures localized groundwater levels. Wenner-Schlumberger array was used to conduct four parallel 2D electrical resistivity spreads (MU1 to MU4). Each spread line was 100 m in length with 1 m electrode spacing and an average spacing of 9 meters between any two adjacent lines. The depth of the investigation was around 23.8 m. Survey lines were drawn going from northwest to southeast. These spreads were combined to prov
... Show MoreFuture generations of wireless communications systems are expected to evolve toward allowing massive ubiquitous connectivity and achieving ultra-reliable and low-latency communications (URLLC) with extremely high data rates. Massive multiple-input multiple-output (m-MIMO) is a crucial transmission technique to fulfill the demands of high data rates in the upcoming wireless systems. However, obtaining a downlink (DL) training sequence (TS) that is feasible for fast channel estimation, i.e., meeting the low-latency communications required by future generations of wireless systems, in m-MIMO with frequency-division-duplex (FDD) when users have different channel correlations is very challenging. Therefore, a low-complexity solution for
... Show MoreTexture is an important characteristic for the analysis of many types of images because it provides a rich source of information about the image. Also it provides a key to understand basic mechanisms that underlie human visual perception. In this paper four statistical feature of texture (Contrast, Correlation, Homogeneity and Energy) was calculated from gray level Co-occurrence matrix (GLCM) of equal blocks (30×30) from both tumor tissue and normal tissue of three samples of CT-scan image of patients with lung cancer. It was found that the contrast feature is the best to differentiate between textures, while the correlation is not suitable for comparison, the energy and homogeneity features for tumor tissue always greater than its valu
... Show MoreThin films of zinc selenide ZnSe have been prepared by using thermal evaporation method in vacuum with different thickness (1000 – 4000) Ao and a deposited on glass substrate and studying some electrical properties including the determination of A.C conductivity and real, imaginary parts of dielectric constant and tangent of loss angle. The result shows that increasing value of A.C conductivity with increasing thickness and temperature, and increasing capacitance value with increasing the temperature and decrease with increasing frequency . Real and imaginary parts of dielectric constant and tangent of loss angle decrease with increasing frequency
Water pollution has created a critical threat to the environment. A lot of research has been done recently to use surface-enhanced Raman spectroscopy (SERS) to detect multiple pollutants in water. This study aims to use Ag colloid nanoflowers as liquid SERS enhancer. Tri sodium phosphate (Na3PO4) was investigated as a pollutant using liquid SERS based on colloidal Ag nanoflowers. The chemical method was used to synthesize nanoflowers from silver ions. Atomic Force Microscope (AFM), Scanning Electron Microscope (SEM), and X-ray diffractometer (XRD) were employed to characterize the silver nanoflowers. This nanoflowers SERS action in detecting Na3PO4 was reported and analyzed
... Show More