Rock failure during drilling is an important problem to be solved in petroleum technology. one of the most causes of rock failure is shale chemical interaction with drilling fluids. This interaction is changing the shale strength as well as its pore pressure relatively near the wellbore wall. In several oilfields in southern Iraq, drilling through the Tanuma formation is known as the most challenging operation due to its unstable behavior. Understanding the chemical reactions between shale and drilling fluid is determined by examining the features of shale and its behavior with drilling mud. Chemical interactions must be mitigated by the selection of suitable drilling mud with effective chemical additives. This study is describing the laboratory methods that concern testing and evaluating the shale instability encountered while drilling operations. The cutting samples are collected from the targeted formation and used to categorize shale reactivity levels and the required additives to inhibit the clay instability. These tests include the descriptive method with the various analytical technique of standard laboratory equipment. The shale testing techniques are the Scanning Electron Microscope (SEM), X-ray Diffraction, X-ray Fluorescence, Cation-Exchange, Capacity (CEC), and Capillary Suction Timer test (CST). Also, Linear swelling meter test (LSM) was performed to enhance the development plan. Tanuma formation contains moderately active clay with the presence of microfractures and micropores in its morphology. And it is controllable by using polymer muds with 8 % of inorganic inhibitor (e.g., KCL), filtration controls additives, and poly amino acid hydration suppressant which showed minimum swelling percentage.
In this research, an enhancement in lubricating, rheological, and filtration properties of unweighted water-based mud is fundamentally investigated using XC polymer NPs with 0.2gm, 0.5gm, 1gm, 2gm, and 4gm concentrations. Bentonite, that had been used in the preparation of unweighted water-based mud, was characterized using XRF-1800 Sequential X-ray Fluorescence Spectrometer, XRD-6100/7000 X-ray Diffractometer, and Malvern Mastersizer 2000 particle size analyzer, respectively. Lubricating, rheology and filtration properties of unweighted water-based mud were measured at room temperature (35°C) using OFITE EP and Lubricity Tester, OFITE Model 900 Viscometer, and OFITE Low-Pressure Filter Press, respectively. XC Polymer N
... Show MoreWellbore instability is one of the most common issues encountered during drilling operations. This problem becomes enormous when drilling deep wells that are passing through many different formations. The purpose of this study is to evaluate wellbore failure criteria by constructing a one-dimensional mechanical earth model (1D-MEM) that will help to predict a safe mud-weight window for deep wells. An integrated log measurement has been used to compute MEM components for nine formations along the studied well. Repeated formation pressure and laboratory core testing are used to validate the calculated results. The prediction of mud weight along the nine studied formations shows that for Ahmadi, Nahr Umr, Shuaiba, and Zubair formations
... Show MoreThis study deals with establishing the depositional environment of the Fatha Formation through facies analysis. It also deals with dividing the formation into units based on the rhythmic nature. Data from selected shallow wells near Hit area and deep wells at East Baghdad Oil field are used. Five major lithofacies are recognized in this study, namely, greenish grey marl, limestone, gypsum (and/or anhydrite), halite and reddish brown mudstone (with occasional sandstone).The limestone lithofacies is divided into three microfacies: Gastropods bioclastic wackestone microfacies, Gastropods peloidal bioclastic packstone, and Foraminiferal packstone microfacies.The lithofacies of the Fatha are nested in a rhythmic pattern or what is known as sh
... Show MoreGhar Formation outcrop at the Iraqi western desert was studied by microfacies analysis
of (13) thin sections collected from wadi Al-Ratgha ( west of Qaim ) . According to
petrographic com position and organisms content ,rocks were subdivided into (4)
microfacies units :bioclastic wackestone , mudstone , miliolids wackestone , and grainstone
with aggregate grains microfacies .Microfacies units reflect shallow marine environment of
low circulation of very warm water at the middle part . The lower and middle part
interbedded with quite open marine environment below the wave base . The upper part was
deposited at shallow marine environment of low circulation . The main diagenetic processes
were the transformation ( ty
The Carbonate-clastic succession in this study is represented by the Shuaiba and Nahr Umr Formations deposited during the Albian - Aptian Sequence. The present study includes petrography, microfacies analyses, and studying reservoir characterizations for 5 boreholes within West Qurna oil field in the study area. According to the type of study succession (clastic – Carbonate) there are two types of facies analyses:-Carbonate facies analysis, which showed five major microfacies were recognized in the succession of the Shuaiba Formation, bioclastic mudstones to wackstone, Orbitolina wackestone to packstone, Miliolids wackestone, Peloidal wackestone to packstone and mudstone to wackestone identified as an open shelf toward the deep basin.
... Show MoreA detailed systematic study of calcareous nannofossils was carried out for the Jaddala Formation in (Aj-10) well, Central Iraq. Seventy one species belong to twenty four genera of calcareous nannofossils were identified including sixty two of them were previously named and nine species were identified for the first time and they would not be given names until more information is obtained in the future to support this identification.
It is a recorded of five biostratigraphic zone, which suggested the age of the Jaddala Formation to be of early to late Eocene. The recorded biozone includes the following: Reticulofenestra dictyoda (Deflandre in Deflandre & Fert, 1954) Stradner & Edwards, 1968 Partial Range Biozone (CNE 5); Discoa