The Electro-Fenton oxidation process is one of the essential advanced electrochemical oxidation processes used to treat Phenol and its derivatives in wastewater. The Electro-Fenton oxidation process was carried out at an ambient temperature at different current density (2, 4, 6, 8 mA/cm2) for up to 6 h. Sodium Sulfate at a concentration of 0.05M was used as a supporting electrolyte, and 0.4 mM of Ferrous ion concentration (Fe2+) was used as a catalyst. The electrolyte cell consists of graphite modified by an electrodepositing layer of PbO2 on its surface as anode and carbon fiber modified with Graphene as a cathode. The results indicated that Phenol concentration decreases with an increase in current density, and the minimum Phenol concentration obtained after 6 h of electrolysis at 8 mA/cm2 is equal to 7.82 ppm starting from an initial concentration about 155 ppm. The results obtained from the kinetic study of Phenol oxidation at different current density showed that the reaction followed pseudo first-order kinetics regarding current density. Energetic parameters like specific power consumption and current efficiency were also estimated at different current density. The results showed that an increase in current density caused an increase in the specific power consumption of the process and decreased current efficiency.
Poly(L-lactic acid) (PLLA)/poly(caprolactone) (PCL) and two types of organoclay (OMMT) including a fatty amide and ocatdecylamine montmorillonite (FA-MMT and ODA-MMT) were employed to produce polymer nanocomposites by melt blending. Materials were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), elemental analysis, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Mechanical properties were also investigated for these nanocomposites. The nanocomposites showed increasing mechanical properties and thermal stability. XRD results indicated that the materials formed nanocomposites. SEM morphology showed that increasing content of OMMT reduc
... Show MoreThe discus throwing event is one of the complex events in athletics, and it is characterized by a performance method that depends on the principle of mechanical moments and requires high explosive capabilities of the thrower in addition to some physical specifications,which depends effectively and effectively on the biomechanical aspects in generating large moments during rotation. The importance of the research is highlighted by the interest in athletics, especially the effectiveness of the discus throw and the continuation of its development process, the importance of kinetic analysis in revealing the most important weaknesses and strengths of shooters, and the importance of explosive power And the moments generated in the rotation of the
... Show More- coli K12 and B. subtilis 168 were investigated for their cadmium and mercury tolerance abilities. They were developed by UV mutagenesis technique to increase their tolerances either to cadmium or mercury, and their names then were designated depend on the name and concentration of metals. E. coli K12 Cd3R exhibited bioremediation amount of 6.5 mg Cd/g dry biomass cell. At the same time, its wild-type (E. coli K12 Cd3) was able to remove 5.2 mg Cd/g dry biomass cell in treatment of 17 mg Cd /L within 72 hours of incubation at 37 °C (pH=7) in vitro assays. The results show that E.coli K12 Hg 20 was able to remove 0.050 µg Hg/g dry biomass cell
KE Sharquie, AA Noaimi, S Adnan, AM Al-Niddawi, WK Aljanabi, American Journal of Dermatology and Venereology, 2020 - Cited by 2
In this work, synthesized N4,N4`-bis(2, 3, 4 nitro benzylidene) biphenyi-4-4`-diamine(B1-B3) , was tested as an inhibitors in controlling the corrosion of carbon steel in NaCl 3.5% solution by using open circuit potential (OCP),at four different temperatures (293, 303, 313 and 323 K). Furthermore, the surface morphology was investigated using the Atomic force microscopy (AFM). The effect of using different Schiff bases and temperature was also investigated. Schiff bases was synthesized and characterized via using. Fourier Transform Infrared Spectroscopy (FT-IR)and Atomic Force Microscope (AFM) characterized . The experimental results shown that Schiff bases can consider as an excellent corrosion inhibitors for carbon steel in NaCl 3
... Show MoreThe cement slurry is a mixture of cement, water and additives which is established at the surface for injecting inside hole. The compressive strength is considered the most important properties of slurry for testing the slurry reliability and is the ability of slurry to resist deformation and formation fluids. Compressive strength is governed by the sort of raw materials that include additives, cement structure, and exposure circumstances. In this work, we use micro silica like pozzolanic materials. Silica fume is very fine noncrystalline substantial. Silica fume can be utilized like material for supplemental cementations for increasing the compressive strength and durability of cement. Silica fume has very fine particles size less
... Show MoreBackground: The occurrence of seizures in bacterial meningitis is important, as it has been reported to increase the risk of complications; however, its frequency and predictors are not well studied yet. Objective: To assess the frequency, clinical, and biochemical predictors of seizures in children with acute bacterial meningitis. Method: A cross-sectional study recruited confirmed acute bacterial meningitis cases based on positive CSF culture and sensitivity among children aged 2 months to 15 years admitted to the Central Child Teaching Hospital emergency department in Iraq. Patients were divided into two groups based on seizure at presentation time. Demographic characteristics [age, gender, residence, duration of fever and disease, prese
... Show MoreA finite element is a study that is capable of predicting crack initiation and simulating crack propagation of human bone. The material model is implemented in MATLAB finite element package, which allows extension to any geometry and any load configuration. The fracture mechanics parameters for transverse and longitudinal crack propagation in human bone are analyzed. A fracture toughness as well as stress and strain contour are generated and thoroughly evaluated. Discussion is given on how this knowledge needs to be extended to allow prediction of whole bone fracture from external loading to aid the design of protective systems.
This paper is focused on studying the effect of cutting parameters (spindle speed, feed and depth of cut) on the response (temperature and tool life) during turning process. The inserts used in this study are carbide inserts coated with TiAlN (Titanum, Aluminium and Nitride) for machining a shaft of stainless steel 316L. Finite difference method was used to find the temperature distribution. The experimental results were done using infrared camera while the simulation process was performed using Matlab software package. The results showed that the maximum difference between the experimental and simulation results was equal to 19.3 , so, a good agreement between the experimental and simulation results was achieved. Tool life w
... Show More