The Electro-Fenton oxidation process is one of the essential advanced electrochemical oxidation processes used to treat Phenol and its derivatives in wastewater. The Electro-Fenton oxidation process was carried out at an ambient temperature at different current density (2, 4, 6, 8 mA/cm2) for up to 6 h. Sodium Sulfate at a concentration of 0.05M was used as a supporting electrolyte, and 0.4 mM of Ferrous ion concentration (Fe2+) was used as a catalyst. The electrolyte cell consists of graphite modified by an electrodepositing layer of PbO2 on its surface as anode and carbon fiber modified with Graphene as a cathode. The results indicated that Phenol concentration decreases with an increase in current density, and the minimum Phenol concentration obtained after 6 h of electrolysis at 8 mA/cm2 is equal to 7.82 ppm starting from an initial concentration about 155 ppm. The results obtained from the kinetic study of Phenol oxidation at different current density showed that the reaction followed pseudo first-order kinetics regarding current density. Energetic parameters like specific power consumption and current efficiency were also estimated at different current density. The results showed that an increase in current density caused an increase in the specific power consumption of the process and decreased current efficiency.
We have studied Bayesian method in this paper by using the modified exponential growth model, where this model is more using to represent the growth phenomena. We focus on three of prior functions (Informative, Natural Conjugate, and the function that depends on previous experiments) to use it in the Bayesian method. Where almost of observations for the growth phenomena are depended on one another, which in turn leads to a correlation between those observations, which calls to treat such this problem, called Autocorrelation, and to verified this has been used Bayesian method.
The goal of this study is to knowledge the effect of Autocorrelation on the estimation by using Bayesian method. F
... Show MoreA 3D Geological model was generated using an advanced geostatistical method for the Cretaceous reservoir in the Bai Hassan oil field. In this study, a 3D geological model was built based on data from four wells for the petrophysical property distribution of permeability, porosity, water saturation, and NTG by using Petrel 2021 software. The geological model was divided into a structural model and a property model. The geological structures of the cretaceous reservoir in the Bai Hassan oil field represent elongated anticline folds with two faults, which had been clarified in the 3D Structural model. Thirteen formations represent the Cretaceous reservoir which includes (Shiranish, Mashurah, U.kometan, Kometan Shale, L. Kometan, Gulnen
... Show MoreThe experiment was carried out at the Field Crops Research Station, College of Agricultural Engineering Sciences - University of Baghdad in Jadiriyah, with the aim of evaluating the performance of partial diallel hybrids and inbred lines of maize and estimating general combining ability(GCA), specific combining ability (SCA) and some genetic parameters. The experiment was carried out in two seasons, spring and fall 2020. Eight inbred lines of maize were used in the study (BI9/834, BSW18, LW/5 L8/844, ZA17W194, Z117W, ZI17W9, ZI7W4), numbered (1,2,3,4,5,6,7,8), It was sowed in the spring season and entered into a cross-program according to a partial diallel crossing system to obtain tw
African Journal of Advanced Pure and Applied Sciences (AJAPAS)
This paper presents a modified training method for Recurrent Neural Networks. This method depends on the Non linear Auto Regressive (NARX) model with Modified Wavelet Function as activation function (MSLOG) in the hidden layer. The modified model is known as Modified Recurrent Neural (MRN). It is used for identification Forward dynamics of four Degrees of Freedom (4-DOF) Selective Compliance Assembly Robot Arm (SCARA) manipulator robot. This model is also used in the design of Direct Inverse Control (DIC). This method is compared with Recurrent Neural Networks that used Sigmoid activation function (RS) in the hidden layer and Recurrent Neural Networks with Wavelet activation function (RW). Simulation results shows that the MRN model is bett
... Show MoreIn this paper waste natural material (date seed) and polymer particles(UF) were used for investigation of removal dye of the potassium permanganate. Also study effect some variables such as pH, dye concentration and adsorbent concentration on dye removal. 15 experimental runs were done using the itemized conditions designed established on the Box-Wilson design employed to optimize dye removal. The optimum conditions for the dye removal were found: (pH) 12, (dye con.) 2.38 ppm, (adsorbant con.) 0.0816 gm for date seed with 95.22% removal and for UF (pH) 12, (dye con.) 18 ppm, (adsorbant con.) 0.2235 gm with 91.43%. The value of R-square was 85.47% for Date seed and (88.77%) for UF.
... Show More
In this research, the focus was on estimating the parameters on (min- Gumbel distribution), using the maximum likelihood method and the Bayes method. The genetic algorithmmethod was employed in estimating the parameters of the maximum likelihood method as well as the Bayes method. The comparison was made using the mean error squares (MSE), where the best estimator is the one who has the least mean squared error. It was noted that the best estimator was (BLG_GE).
Multiple eliminations (de-multiple) are one of seismic processing steps to remove their effects and delineate the correct primary refractors. Using normal move out to flatten primaries is the way to eliminate multiples through transforming these data to frequency-wavenumber domain. The flatten primaries are aligned with zero axis of the frequency-wavenumber domain and any other reflection types (multiples and random noise) are distributed elsewhere. Dip-filter is applied to pass the aligned data and reject others will separate primaries from multiple after transforming the data back from frequency-wavenumber domain to time-distance domain. For that, a suggested name for this technique as normal move out- frequency-wavenumber domain
... Show MoreBootstrap is one of an important re-sampling technique which has given the attention of researches recently. The presence of outliers in the original data set may cause serious problem to the classical bootstrap when the percentage of outliers are higher than the original one. Many methods are proposed to overcome this problem such Dynamic Robust Bootstrap for LTS (DRBLTS) and Weighted Bootstrap with Probability (WBP). This paper try to show the accuracy of parameters estimation by comparison the results of both methods. The bias , MSE and RMSE are considered. The criterion of the accuracy is based on the RMSE value since the method that provide us RMSE value smaller than other is con
... Show More