The Electro-Fenton oxidation process is one of the essential advanced electrochemical oxidation processes used to treat Phenol and its derivatives in wastewater. The Electro-Fenton oxidation process was carried out at an ambient temperature at different current density (2, 4, 6, 8 mA/cm2) for up to 6 h. Sodium Sulfate at a concentration of 0.05M was used as a supporting electrolyte, and 0.4 mM of Ferrous ion concentration (Fe2+) was used as a catalyst. The electrolyte cell consists of graphite modified by an electrodepositing layer of PbO2 on its surface as anode and carbon fiber modified with Graphene as a cathode. The results indicated that Phenol concentration decreases with an increase in current density, and the minimum Phenol concentration obtained after 6 h of electrolysis at 8 mA/cm2 is equal to 7.82 ppm starting from an initial concentration about 155 ppm. The results obtained from the kinetic study of Phenol oxidation at different current density showed that the reaction followed pseudo first-order kinetics regarding current density. Energetic parameters like specific power consumption and current efficiency were also estimated at different current density. The results showed that an increase in current density caused an increase in the specific power consumption of the process and decreased current efficiency.
Silicon nitride nanostructures were prepared by reactive sputtering technique using silicon targets with different types of electrical conductivity (n-type and p-type) and Ar:N2 gas mixing ratio of 70:30. The optical microscopy and spectroscopic characteristics of these films were determined in order to introduce the effect of target conductivity type on these characteristics. The results showed that using p-type silicon target would produce Si3N4 films with lower tendency to adsorb water vapor and other constituents of the atmospheric air, higher absorbance in the visible range 400-700nm, and lower variation in the energy band gap with film thickness than the Si3N4 films prepared from n-type silicon target.
Wastewater recycling for non-potable uses has gained significant attention to mitigate the high pressure on freshwater resources. This requires using a sustainable technique to treat natural municipal wastewater as an alternative to conventional methods, especially in arid and semi-arid rural areas. One of the promising techniques applied to satisfy the objective of wastewater reuse is the constructed wetlands (CWs) which have been used extensively in most countries worldwide through the last decades. The present study introduces a significant review of the definition, classification, and components of CWs, identifying the mechanisms controlling the removal process within such units. Vertical, horizontal, and hybrid CWs
... Show MoreThe need for renewable energy sources is higher than ever due to rising global warming, climate change, and ozone depletion. For refrigeration and air conditioning applications, adsorption refrigeration systems are viable alternatives cooling techniques. This study is a topic and part of the M.Sc. thesis. A field solar-powered ice maker unit was created, studied, tested, and evaluated on the 13th and 30th of May, 2022. Activated carbon and methanol pair was used to set up a refrigeration system in Baghdad (Al Dora). Experimental tests were carried out outdoors to determine the coefficient of performance COP and specific cooling power SCP of the system. The results showed that the lowest temperature
... Show More<p><strong>Objective: </strong>The aim of our study was to compare between flavonoids and phenolic acids contents of leaves and fruits of <em>Melia azedarach</em> since no phytochemical investigation had done previously in Iraq.</p><p><strong>Methods: </strong>The leaves and fruits of <em>Melia azedarach </em>were extracted by soxhlet using 80% ethanol then the dried extract was suspended in water and fractionated using petroleum ether, chloroform, ethyl acetate, and n-butanol. The n-butanol fraction was hydrolyzed by acid and partitioned with ethyl acetate. The different fractions containing flavonoids and phenolic acids were analyzed by HPLC and HPTLC.</p><
... Show MoreThis study found that one of the constructive, necessary, beneficial, most effective, and cost-effective ways to meet the great challenge of rising energy prices is to develop and improve energy quality and efficiency. The process of improving the quality of energy and its means has been carried out in many buildings and around the world. It was found that the thermal insulation process in buildings and educational facilities has become the primary tool for improving energy efficiency, enabling us to improve and develop the internal thermal environment quality processes recommended for users (student - teacher). An excellent and essential empirical study has been conducted to calculate the fundamental values of the
... Show MoreThe ZnO nanoparticles were synthesized at various precursor concentrations i.e. 0.05, 0.1, and 0.5 M by biosynthesis method based on Pometia pinnata Leaf Extracts. Initial nanoparticle concentration influenced the optical bandgap, shape, and structure of nanoparticles. The photodegradation process was carried out under UV illumination. The efficiency of MB degradation was determined by measuring the decrease in MB concentration and by analyzing the optical absorption at 663 nm recorded by UV-Vis spectroscopy. Results showed that the biosynthesized ZnO nanoparticles exhibited efficient photodegradation of MB, with a maximum degradation rate of 80% after 90 minutes of exposure to UV-C light. The study highlights the potential of Pometia pi
... Show MoreThis research focuses on the synthesis of carbon nanotube (CNT) and Poly(3-hexylthiophene) (P3HT) (pristine polymer) with Ag doped (CNT/ P3HT@Ag) nanocomposite thin films to be utilised in various practical applications. First, four samples of CNT solution and different ratios of the polymer (P3HT) [0.1, 0.3, 0.5, and 0.7 wt.%] are prepared to form thin layer of P3HT@CNT nanocomposites by dip-coating method of Ag. To investigate the absorption and conductivity properties for use in various practical applications, structure, morphology, optical, and photoluminescence properties of CNT/P3HT @Ag nanocomposite are systematically evaluated in this study. In this regard, the UV/Vis/NIR spectrophotometer in the wavelength range of 350 to 7
... Show MoreNew metal complexes of the ligand 4-[5-(2-hydoxy-phenyl)-[1,3,4- oxadiazol -2-ylimino methyl]-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one (L) with the metal ions Co(II), Ni(II), Cu(II) and Zn(II) were prepared in alcoholic medium. The Schiff base was synthesized through condensate of [4-antipyrincarboxaldehyde] with[2-amino-5-(2-hydroxy-phenyl-1,3,4- oxadiazol] in alcoholic medium . Two tetradentate Schiff base ligand were used for complexation upon two metal ions of Co2+, Ni2+, Cu2+ and Zn2+ as dineucler formula M2L2.4H2O. The metal complexes were characterized by FTIR Spectroscopy, electronic Spectroscopy, elemental analysis, magnetic susceptidbility measurements, and also the ligand was characterized by 1H-NMR spectra, and m
... Show More