The Electro-Fenton oxidation process is one of the essential advanced electrochemical oxidation processes used to treat Phenol and its derivatives in wastewater. The Electro-Fenton oxidation process was carried out at an ambient temperature at different current density (2, 4, 6, 8 mA/cm2) for up to 6 h. Sodium Sulfate at a concentration of 0.05M was used as a supporting electrolyte, and 0.4 mM of Ferrous ion concentration (Fe2+) was used as a catalyst. The electrolyte cell consists of graphite modified by an electrodepositing layer of PbO2 on its surface as anode and carbon fiber modified with Graphene as a cathode. The results indicated that Phenol concentration decreases with an increase in current density, and the minimum Phenol concentration obtained after 6 h of electrolysis at 8 mA/cm2 is equal to 7.82 ppm starting from an initial concentration about 155 ppm. The results obtained from the kinetic study of Phenol oxidation at different current density showed that the reaction followed pseudo first-order kinetics regarding current density. Energetic parameters like specific power consumption and current efficiency were also estimated at different current density. The results showed that an increase in current density caused an increase in the specific power consumption of the process and decreased current efficiency.
Abstract
A two electrode immersion electrostatic lens used in the design
of an electron gun, with small aberration, has been designed using
the finite element method (FEM). By choosing the appropriate
geometrical shape of there electrodes the potential V(r,z) and the
axial potential distribution have been computed using the FEM to
solve Laplace's equation.
The trajectory of the electron beam and the optical properties of
this lens combination of electrodes have been computed under
different magnification conditions (Zero and infinite magnification
conditions) from studying the properties of the designed electron
gun can be supplied with Abeam current of 5.7*10-6 A , electron
gun with half acceptance
This manuscript presents several applications for solving special kinds of ordinary and partial differential equations using iteration methods such as Adomian decomposition method (ADM), Variation iterative method (VIM) and Taylor series method. These methods can be applied as well as to solve nonperturbed problems and 3rd order parabolic PDEs with variable coefficient. Moreover, we compare the results using ADM, VIM and Taylor series method. These methods are a commination of the two initial conditions.
In this study, the effect of pumping power on the conversion efficiency of nonlinear crystal (KTP) was investigated using laser pump-power technique. The results showed that the higher the pumping power values, the greater the conversion efficiency (η) and, as the crystal thickness increases within limitations, the energy conversion efficiency increases at delay time of (0.333 ns) and at room temperature. Efficiency of 80% at length of KTP crystal (L = 1.75 X 10-3 m) and Pin = 28MW, and also, compare the experimental results with numerical results by using MATLAB program.
Original Research Paper Mathematics 1-Introduction : In the light of the progress and rapid development of the applications of research in applications fields, the need to rely on scientific tools and cleaner for data processing has become a prominent role in the resolution of decisions in industrial and service institutions according to the real need of these methods to make them scientific methods to solve the problem Making decisions for the purpose of making the departments succeed in performing their planning and executive tasks. Therefore, we found it necessary to know the transport model in general and to use statistical methods to reach the optimal solution with the lowest possible costs in particular. And you know The Transportatio
... Show MoreFuture wireless communication systems must be able to accommodate a large number of users and simultaneously to provide the high data rates at the required quality of service. In this paper a method is proposed to perform the N-Discrete Hartley Transform (N-DHT) mapper, which are equivalent to 4-Quadrature Amplitude Modulation (QAM), 16-QAM, 64-QAM, 256-QAM, … etc. in spectral efficiency. The N-DHT mapper is chosen in the Multi Carrier Code Division Multiple Access (MC-CDMA) structure to serve as a data mapper instead of the conventional data mapping techniques like QPSK and QAM schemes. The proposed system is simulated using MATLAB and compared with conventional MC-CDMA for Additive White Gaussian Noise, flat, and multi-path selective fa
... Show MoreIn this work, radius of shock wave of plasma plume (R) and speed of plasma (U) have been calculated theoretically using Matlab program.
In the present study twenty samples of human urine were taken
from healthy male and female with different of: ages, occupation and
place of residence. These samples were collected from the hospital to
measure the concentration of radon gas in human urine by using one
of solid state nuclear track detectors LR-115.
The results obtained of the concentrations of radon in healthy human
urine are varying from 2.12×10-3 Bq.l-1 to 4.42×10-3 Bq.l-1 and
these values are less than the allowed limits 12.3×10-3 Bq.l-1.
This research dealt with desalting of East Baghdad crude oil using pellets of either anionic, PVC, quartz, PE, PP or
nonionic at different temperature ranging from 30 to 80 °C, pH from 6 to 8, time from 2 to 20 minutes, volume percent
washing water from 5 to 25% and fluid velocity from 0.5 to 0.8 m/s under voltage from 2 to 6 kV and / or using additives
such as alkyl benzene sulphonate or sodium stearate. The optimum conditions and materials were reported to remove
most of water from East Baghdad wet crude oil.