Polyethersulfone (PES) ultrafiltration membrane blending NaX zeolite crystals as a hydrophilic additive was examined for zinc (II) and lead ions Pb (II) removal from aqueous solutions. The effect of NaX zeolite content on the permeation flux and removal efficiency was studied. The results showed that adding zeolite to the polymer matrix enhanced the permeation flux. The permeation flux of all the zeolite/PES matrix membranes was higher than the pristine membrane. No significant improvement was observed in the removal of Zn (II) ions using all prepared membranes as the removal percentage did not raise above 29.2%. However, the removal percentage of Pb (II) ions was enhanced to 97% using a membrane containing 0.9%wt. zeolite. Also, it was found that this membrane has a higher ion exchange capacity than the other prepared membranes. Two isotherm models (Langmuir model, and Freundlich model) were employed in the analysis of the ion exchange equilibrium data. The experimental data best fitted the Langmuir model with R2 of 0.889 than the Freundlich model.
Acidity constants at 30co and 0.125 ionic strength have been determined for the Nitrogous bases of nucleic acid; cytocine, uarcil and thymine, and found to be 3.55 x10-19 , 1.44 x10 -19 and 7.24 x10 -20 respectively. Stability constants of these bases with Thorium and uranyl ions have been determined. Results showed that metal ions Thorium and uranyl ions behave as hard acids and the nitrogenum bases behave as Hard bases according to Pearson's definition .Hardness – softness parameters for these ligands were calculated ,stability constants of complexes with metal ions could be arranged as follows :- Cytosine > Uracil > Thymine .
The biosorption of Pb (II), Cd (II), and Hg (II) from simulated aqueous solutions using baker’s yeast biomass was investigated. Batch type experiments were carried out to find the equilibrium isotherm data for each component (single, binary, and ternary), and the adsorption rate constants. Kinetics pseudo-first and second order rate models applied to the adsorption data to estimate the rate constant for each solute, the results showed that the Cd (II), Pb (II), and Hg (II) uptake process followed the pseudo-second order rate model with (R2) 0.963, 0.979, and 0.960 respectively. The equilibrium isotherm data were fitted with five theoretical models. Langmuir model provides the best fitting for the experimental results with (R2) 0.992, 0
... Show MoreThe 17 α-ethinylestradiol (EE2) adsorption from aqueous solution was examined using a novel adsorbent made from rice husk powder coated with CuO nanoparticles (CRH). Advanced analyses of FTIR, XRD, SEM, and EDSwere used to identify the classification parameters of a CRH-like surface morphology, configuration, and functional groups. The rice husk was coated with CuO nanoparticles, allowing it to create large surface area materials with significantly improved textural qualities with regard to functional use and adsorption performance, according to a detailed characterization of the synthesized materials. The adsorption process was applied successfully with elimination effectiveness of 100% which can be kept up to 61.3%. The parameters of ads
... Show MoreA method has been demonstrated to synthesise effective zeolite membranes from existing crystals without a hydrothermal synthesis step.
The present study is to investigate the possibility of using wastes in the form of scrap iron (ZVI) and/ or aluminum ZVAI for the detention and immobilization of the chromium ions in simulated wastewater. Different batch equilibrium parameters such as contact time (0-250) min, sorbent dose (2-8 g ZVI/100 mL and 0.2-1 g ZVAI/100 mL), initial pH (3-6), initial pollutant concentration of 50 mg/L, and speed of agitation (0-250) rpm were investigated. Maximum contaminant removal efficiency corresponding to (96 %) at 250 min contact time, 1g ZVAI/ 6g ZVI sorbent mass ratio, pH 5.5, pollutant concentration of 50 mg/L initially, and 250 rpm agitation speed were obtained.
The best isotherm model for the batch single Cr(III) uptake by ZVI
... Show MoreThe sorption of Cu2+ ions from synthetic wastewater using crushed concrete demolition waste (CCDW) which collected from a demolition site was investigated in a batch sorption system. Factors influencing on sorption process such as shaking time (0-300min), the initial concentration of contaminant (100-750mg/L), shaking speed (0-250 rpm), and adsorbent dosage (0.05-3 g/ml) have been studied. Batch experiments confirmed that the best values of these parameters were (180 min, 100 mg/l, 250 rpm, 0.7 g CCDW/100 ml) respectively where the achieved removal efficiency is equal to 100%. Sorption data were described using four isotherm models (Langmuir, Freundlich, Redlich-Peterson, and Radke-Prausnitz). Results proved that the pure ads
... Show MoreOur research aimed to find a new material that can be an efficient heavy metal free flame retardant for plasticized poly(vinyl chloride) comparable to the conventional flame retardants. One of these extraordinary materials is Oxydtron using as an admixture for concrete. Oxydtron showed unexpected efficiency as a flame retardant agent and an excellent heat stabilizer as well. Limiting oxygen index (LOI), static heat stability, Congo-red, and differential scanning calorimetry (DSC) were carried out. The thermal tests proved that Oxydtron is suitable to improve plasticized poly(vinyl chloride) performance at high temperatures applications in terms of flame retarding and thermal stability
The cost-effective carbon cross-linked Y zeolite nanocrystals composite (NYC) was prepared using an eco-friendly substrate prepared from bio-waste and organic adhesive at intermediate conditions. The green synthesis method dependent in this study assures using chemically harmless compounds to ensure homogeneous distribution of zeolite over porous carbon. The greenly prepared cross-linked composite was extensively characterized using Fourier transform infrared, nitrogen adsorption/desorption, Field emission scanning electron microscope, Dispersive analysis by X-ray, Thermogravimetric analysis, and X-ray diffraction. NYC had a surface area of 176.44 m2/g, and a pore volume of 0.0573 cm3/g. NYC had a multi-function nature, sustained at a long-
... Show More