This research provides a novel technique for using metal organic frameworks (HKUST-1) as a gas storage system for liquefied petroleum gas (LPG) in Iraqi vehicles to avoid the drawbacks of the currently employed method of LPG gas storage. A low-cost adsorbent called HKUST-1 was prepared and characterized in this research to investigate its ability for propane storage at different temperatures (25, 30, 35, and 40 oC) and pressures of (1-7) bar. HKUST-1 was made using a hydrothermal method and characterized using powder X-ray diffraction, BET surface area, scanning electron microscopic (SEM), and Fourier Transforms infrared spectroscopy (FTIR). The HKUST-1 was produced using a hydrothermal technique and possesses a high crystallinity of up to 97%, surface area 3400 m2/g, and pore volume 0.7 cm3/g. The prepared adsorbent (HKUST-1) tested using volumetric method, the maximum adsorption capacity of propane was (10.499 mmol/g) at a temperature of 298K and a pressure of 7 bar. Furthermore, adsorption isotherm study was conducted to understand the system equilibrium (i.e., the fitting with one of the known models Langmuir, Freundlich, and Temkin isotherm models). It was observed that the Freundlich isotherm model fitted well the experimental data. The Clausius-Clapeyron equation was used to determine the heat of adsorption, and the results revealed that the heat of adsorption increased as the propane adsorption capacity increased. The prepared HKUST-1, which has a large surface area and a high adsorption capacity, can be used as a major solution for gas storage for liquefied petroleum gas (LPG) in Iraqi vehicles.
Gas coning is one of the most serious problems in oil wells. Gas will reach the perforations and be produced with oil. Anyhow there is a certain production rate called critical production rate. The daily production rate should not exceed the critical production rate. In this research ten oil wells have been tested for problem of gas coning for a period of time of eighteen months. The production rates of these Ten oil wells are tabulated in a table exist in this research.
These production rates are considered as critical production rate because no gas coning has been observed in these wells. The critical production rates of these wells don't concide with those obtained from (Meyer, Gardiner, Pirson) method and also they don’t concide
Albizia lebbeck biomass was used as an adsorbent material in the present study to remove methyl red dye from an aqueous solution. A central composite rotatable design model was used to predict the dye removal efficiency. The optimization was accomplished under a temperature and mixing control system (37?C) with different particle size of 300 and 600 ?m. Highest adsorption efficiencies were obtained at lower dye concentrations and lower weight of adsorbent. The adsorption time, more than 48 h, was found to have a negative effect on the removal efficiency due to secondary metabolites compounds. However, the adsorption time was found to have a positive effect at high dye concentrations and high adsorbent weight. The colour removal effi
... Show MoreThe physical and morphological characteristics of porous silicon (PS) synthesized via gas sensor was assessed by electrochemical etching for a Si wafer in diluted HF acid in water (1:4) at different etching times and different currents. The morphology for PS wafers by AFM show that the average pore diameter varies from 48.63 to 72.54 nm with increasing etching time from 5 to 15min and from 72.54 to 51.37nm with increasing current from 10 to 30 mA. From the study, it was found that the gas sensitivity of In2O3: CdO semiconductor, against NO2 gas, directly correlated to the nanoparticles size, and its sensitivity increases with increasing operating temperature.
Nanostructural cupric oxide (CuO) films were prepared on Si and glass substrate by pulsed laser deposition technique (PLD) using laser Nd:YAG, using different laser pulses energies from 200 to 600 mJ. The X-ray diffraction pattern (XRD) of the films showed a polycrystalline structure with a monoclinic symmetry and preferred orientation toward (111) plane with nano structure. The crystallite size was increasing with increasing of laser pulse energy. Optical properties was characterized by using UV–vis spectrometer in the wave lengthrange (200-1100) nm at room temperature. The results showed that the transmission spectrum decreases with the laser pulses energy increase. Sensitivity of NO2 gas at different operating temperatures, (50°C,
... Show MoreIn the present study, radon gas concentration in the shallow groundwater samples of the Abu-Jir region in Anbar governorate was measured by using Rad-7 detector. The highest radon gas level in the samples is up to 9.3 Bq/L, while the lowest level is 2.1 Bq/L, with an average of 6.44±1.8 Bq/L. The annual effective dose is varied from 33.945 μSv/y to 7.66 μSv/y, with an average of 0.145±0.06 μSv/y. Consequently, the radon level in the groundwater studied is lower than the standard recommended value (11 Bq/L) reported by the United States Environmental Protection Agency (USEPA). The potential source of radon is uranium-rich hydrocarbons that are leakage to the surface along the Abu-Jir Fault. This research did not indicate any ris
... Show MoreTin dioxide (SnO2) were mixed with (TiO2 and CuO) with concentration ratio (50, 60, 70, 80 and 90) wt% films deposited on single crystal Si and glass substrates at (523 K) by spray pyrolysis technique from aqueous solutions containing tin (II) dichloride Dihydrate (SnCl2, 2H2O), dehydrate copper chloride (CuCl2.2H2O) and Titanium(III) chloride (TiCl3) with molarities (0.2 M). The results of electrical properties and analysis of gas sensing properties of films are presented in this report. Hall measurement showed that films were n-type converted to p- type as titanium and copper oxide added at (50) % ratio. The D.C conductivity measurements referred that there are two mechanisms responsible about the conductivity, hence it possess two act
... Show MoreThis paper shows the characteristics of temperature and adsorbed (water vapor) mass rate distribution in the adsorber unit which is the key part to any adsorption refrigeration system. The temperature profiles of adsorption/desorption phases (Dynamic Sorption) are measured experimentally under the operating conditions of 90oC hot water temperature, 30oC cooling water temperature, 35oC adsorption temperature and cycle time of 40 min. Based on the temperature profiles, The mass transfer equations for the annulus adsorbent bed are solved to obtain the distribution of adsorption velocity and adsorbate concentration using non-equilibrium
model. The relation between the adsorption velocity with time is investigated during the process of ads