Zinc-air fuel cells (ZAFCs) are a promising energy source that could compete with lithium-ion batteries and perhaps proton-exchange membrane fuel cells (PEMFCs) for next-generation electrified transportation and energy storage applications. In the present work, a flow-type ZAFC with mechanical rechargeable was adopted, combined with an auxiliary cell (electrolyzer) for zinc renewal and electrolyte recharge to the main cell. In this work a practical study was performed to calculate the cell capacity (Ah), as well as study the electrolysis cell efficiency by current efficiency, and study the effective parameters that have an influence on cell performance such as space velocity and current density. The best parameters were selected to obtain the best performance for cell operation. The obtained cell capacity was 2.4Ah. The best performance of the electrolyzer was obtained with 0.6min-1 space velocity. At the same time, the best performance of the electrolyzer was when the value of the current density was 200A/m2
An electrolytic process for the removal of Zn(II) from aqueous solution using a parallel amalgamated copper screens cathode operated in the flow through mode is proposed. The current-potential curves recorded at a rotating amalgamated copper disc electrode were used to determine diffusion coefficient of Zn(II). The performance of electrolytic reactor was investigated by using different flow rates at initial zinc ion concentration(48 mg/L). Taking into account the residential Zn(II) concentration, the best results were obtained for cathode potential of (-1.35 V vs. SCE) at flow rate (320 L/h). Zinc ion concentration was found to decrease from 48 mg/L to 1 mg/L during 120 min. of electrolysis. The experimental data are well correlate
... Show MoreIn this research, the effect of reinforcing epoxy resin composites with a filler derived from chopped agriculture waste from oil palm (OP). Epoxy/OP composites were formed by dispersing (1, 3, 5, and 10 wt%) OP filler using a high-speed mechanical stirrer utilizing a hand lay-up method. The effect of adding zinc oxide (ZnO) nanoparticles, with an average size of 10-30 nm, with different wt% (1,2,3, and 5wt%) to the epoxy/oil palm composite, on the behavior of an epoxy/oil palm composite was studied with different ratios (1,2,3, and 5wt%) and an average size of 10-30 nm. Fourier Transform Infrared (FTIR) spectrometry and mechanical properties (tensile, impact, hardness, and wear rate) were used to examine the composites. The FTIR
... Show MoreKE Sharquie, AA Noaimi, ER Shwail, J Clin Exp Dermatol Res, 2012 - Cited by 41
KE Sharquie, SA Al-Mashhadani, AA Noaimi, AA Hasan, Journal of Cutaneous and Aesthetic Surgery, 2012 - Cited by 19
The developments and transformations taking place in the era and the growth of knowledge economies and communication technology led this development to compel higher education institutions in Iraq to reconsider their objectives to keep pace with development. And one of the most important tools of development was the application of e-learning standards and its long-term impact on the performance of the educational institution. Performance auditing plays an important role in verifying the extent to which these institutions have implemented their activities and programs that auditing performance by adopting e-learning standards helps the institutions’ management by providing appropriate information on the extent to which they achieve thei
... Show MoreThe inhibition effect of crude juice of green and black olive on cancer cell line (RD) in vitro has been studied by depending on micro titration system . Eleven different concentration starting from (916-960) mg/ml of crude juice respectively ,for three periods of exposure(24-48-72)hours. The resulted showed that the inhibition effect dependent on type of olive fruit juice ,concentration of dose ,time of exposure and the high concentration of both type of olive juice increased the growth of cell line while other concentration caused decrease in different rates ,moreover the black juice was more effective than green and 48 hours' time exposure was the best for inhibition.
The air flow pattern in a co-current pilot plant spray dryer fitted with a rotary disk atomizer was determined experimentally and modelled numerically using Computational Fluid Dynamics (CFD) (ANSYS Fluent ) software. The CFD simulation used a three dimensions system, Reynolds-Average Navier-Stokes equations (RANS), closed via the RNG k −ε turbulence model. Measurements were carried out at a rotation of the atomizer (3000 rpm) and when there is no rotation using a drying air at 25 oC and air velocity at the inlet of 5 m/s without swirl. The air flow pattern was predicted experimentally using cotton tufts and digital anemometer. The CFD simulation predicted a downward central flowing air core surrounded by a slow
... Show More