Well integrity is a vital feature that should be upheld into the lifespan of the well, and one constituent of which casing, necessity to be capable to endure all the interior and outside loads. The casing, through its two basic essentials: casing design and casing depth adjustment, are fundamental to a unique wellbore that plays an important role in well integrity. Casing set depths are determined based on fracturing pressure and pore pressure in the well and can usually be obtained from well-specific information. Based on the analyzes using the improved techniques in this study, the following special proposition can be projected: The selection of the first class and materials must be done correctly and accurately in accordance with the depth of casing preparation and the strategy in the considered field that must be taken into account definitely in the drilling and completion period, nevertheless correspondingly in production and upkeep, conversion to an injection well or the opposite, the plug in addition to the closing stage. Features that control the depth of the casing seat have been studied, which consist of fracture gradient, pore pressure with other issues are the surviving lithology's of rocks. Subsequently defining the casing seat can be sustained with an investigation of the determination of the suitable drilling fluid. According to the consequences of the fracture pressure and pore pressure investigation and the findings of casing setting depth by means of the bottom-up technique, the consequences are gotten to each casing for the 4 studied wells. reference point designed from the rotating table RT. For well A, the conductor casing depth is 47m, the casing surface depth is 533m, the intermediate casing setting depth is 1882 m. Finally, for the production casing depth is 3441 m. Compared to the collapse pressure method, it was found that the bottom-up method gave results that are close and similar to the real results. The results of other wells are included in the search consequences
This study investigates the treatment of used lubricating oils from AL-Mussaib Gas Power Station Company-Iraq, which was treated with different extractive solvents (heptane and 2-propanol). The performance activity of these solvents in the extraction process was examined and evaluated experimentally. Operating parameters were solvent to oil ratios of (1:2, 1:4, 1:6, and 1:8), mixing time (20, 35, 50, and 65 min), temperatures (30, 40, 50, and 60 ºC), and mixing speed (500 rpm). These parameters were studied and analyzed. The quality is determined by the measuring and assessment of important characteristics specially viscosity, viscosity index, specific gravity, pour point, flash point, and ash content. The results confirm that the
... Show MoreOne of the most important human diseases that need to be considered in terms of development of the medical engineering devices is cardiovascular disease which is a significant cause of death globally recently. Valvular heart disease is normally treated by restoring or altering heart valves with an artificial one. But the new prosthetic valve designs necessitate testing for durability estimate and failure method. It is significant to simulate the circulation system by the building of a pulse duplicator system. This study is stated by clarifying the parameter and implementation steps of the pulse duplicator system in which the different researchers have utilized the system and tried to explain the design steps of using this system wit
... Show MoreThe present study deals with the optimum design of self supporting steel communication towers. A special technique is used to represent the tower as an equivalent hollow tapered beam with variable cross section. Then this method is employed to find the best layout of the tower among prespecified configurations. The formulation of the problem is applied to four types of tower layout
with K and X brace, with equal and unequal panels. The objective function is the total weight of the tower. The variables are the base and the top dimensions, the number of panels for the tower and member's cross section areas. The formulations of design constraints are based on the requirements of EIA and ANSI codes for allowable stresses in the members
This article will address autoclave design considerations and
manufacturing working with high pressure low temperature
supercritical drying technique to produce silica aerogel. The design
elects carbon dioxide as a supercritical fluid (31.7 oC and 72.3 bar).
Both temperature and pressure have independently controlling
facility through present design. The autoclave was light weight (4.5
kg) and factory-made from stainless steel. It contains a high pressure
window for monitoring both transfer carbon dioxide gas to liquid
carbon dioxide and watching supercritical drying via aerogel
preparation process. In this work aerogel samples were prepared and
the true apparent densities, total pore volume and pore size
As the child is growing up, he goes through different phases which will be accompanied by physical and psychological changes. These changes set the basis for processes of designing and making children's clothes which in turn give its required benefits and meet the physiological, psychological and community needs. That will help provide the child with healthy physical and psychological growth.
The aim of this research is to recognize the decoration of clothes by colors and drawings and its role in clothes' richness and children's education. The research limits are objective, The limits are for female (3-5) years old. The research was done in teaching kindergarten in the college of education for women in 2016. The researchers found many
The Internet of Things (IoT) technology is every object around us and it is used to connect these objects to the Internet to verify Machine to Machine (M2M) communication. The smart house system is the most important application of IoT technology; it is increase the quality of life and decrease the efforts. There were many problems that faced the existing smart house networking systems, including the high cost of implementation and upgrading, high power consumption, and supported limited features. Therefore, this paper presents the design and implementation of smart house network system (SHNS) using Raspberry Pi and Arduino platforms as network infrastructure with ZigBee technology as wireless communication. SHNS consists of two mai
... Show MoreRecent advances in wireless communication systems have made use of OFDM technique to achieve high data rate transmission. The sensitivity to frequency offset between the carrier frequencies of the transmitter and the receiver is one of the major problems in OFDM systems. This frequency offset introduces inter-carrier interference in the OFDM symbol and then the BER performance reduced. In this paper a Multi-Orthogonal-Band MOB-OFDM system based on the Discrete Hartley Transform (DHT) is proposed to improve the BER performance. The OFDM spectrum is divided into equal sub-bands and the data is divided between these bands to form a local OFDM symbol in each sub-band using DHT. The global OFDM symbol is formed from all sub-bands together using
... Show More