This study investigates the treatment of used lubricating oils from AL-Mussaib Gas Power Station Company-Iraq, which was treated with different extractive solvents (heptane and 2-propanol). The performance activity of these solvents in the extraction process was examined and evaluated experimentally. Operating parameters were solvent to oil ratios of (1:2, 1:4, 1:6, and 1:8), mixing time (20, 35, 50, and 65 min), temperatures (30, 40, 50, and 60 ºC), and mixing speed (500 rpm). These parameters were studied and analyzed. The quality is determined by the measuring and assessment of important characteristics specially viscosity, viscosity index, specific gravity, pour point, flash point, and ash content. The results confirm that the solvent 2-Propanol gave great proficiency with the most elevated percent of sludge removal compared with heptane. The greatest percentage of waste removal is enhanced when the solvent/oil ratio increases with optimal economic aspects. The significant characteristics of the reused lubricating oil were estimated. The outcome of the results indicates that the adjustment of the characteristics of reused oil has great effectiveness and the best working conditions for 2-Propanol (35 min, 1:6 S/O ratio, 40 ºC), and heptane (50 min, 1:6 S/O ratio, 50 ºC).
The toxicological risks and lifetime cancer risks associated with exposure to disinfection by-products (DBPs) including Halloacetic acids (HAAs) and trihalomethanes (THMs) compounds by drinking water in several districts in Wassit Province were estimated. The seasonal variation of HAAs and THMs compounds in drinking water have indicated that the mean values for total HAAs (THAAs) and total THMs (TTHMs) ranged from 43.2 to 72.4 mg/l and from 40 to 115.5 mg/l, respectively. The World health organization index for additive toxicity approach was non-compliant with the WHO guideline value in summer and autumn seasons and this means that THMs concentration has adverse toxic health effects. The multi-pathway of lifetime hu
... Show MoreIntroduction: Biocides are commonly used for disinfection in a variety of contexts. They are generally used to avoid infection by controlling biofilm on medical equipment. However, the literature lacks information on the effect of biocide on efflux pump gene expression. Objective: To determine the influence of biocide on biofilm development and efflux pump acrA and ramA gene expression. Methodology: The microtiter plate method was used to identify biofilm development in 80 isolates of K. pneumoniae. The minimal inhibitory concentrations (MIC) of three biocides (quaternary ammonium compound (QAC), chlorohexidine digluconate, and chloroxylenol) were estimated. The effect of QAC on the intensity and viability of biofilms was investigated as we
... Show MoreIodine-doped polythiophene thin films are prepared by aerosol assisted plasma jet polymerization at atmospheric pressure and room temperature. The doping of iodine was carried out in situ by employing iodine crystals in thiophene monomer by weight mixing ratios of 1%, 3%, 5% and 7%. The chemical composition analyses of pure and iodine-doped and heat-treated polythiophene thin films are carried out by FTIR spectroscopy studies. The optical band gaps of the films are evaluated from absorption spectrum studies. Direct transition energy gaps are determined from Tauc plots. The structural changes of polythiophene upon doping and the reduction of optical band gap are explained on the basis of the results obtained from FTIR spectroscopy, UV–V
... Show MoreThis research deals with the effect of gallium oxide and cerium oxide as dopants on the structural and optical characteristics of tin oxide. Gallium and cerium oxide doped tin oxide was prepared with different doping concentrations (0, 0.03, 0.05 and 0.07) wt. pure and doped tin oxide thin films were prepared by the pulsed laser deposition technique. X-ray diffraction and UV-Visible spectrophotometer were employed to investigate both oxides doping effects. Results showed that all prepared samples have poly-crystalline structure with a preferred plane of crystal growth along (110), where the crystal size grew from 40.3 nm to 64.5 nm and to 43.5 nm for Ga2O3 and CeO2 doped tin oxide thin films, res
... Show MoreIn this work, (CdO)1-x (CoO)x thin films were prepared on glass slides by laser-induced plasma using Nd:YAG laser with (λ=1064 nm) and duration (9 ns) at different laser energies (200-500 mJ) with ratio (x=0.5), The influence of laser energy on structural and optical properties has been studied. XRD patterns show the films have a structure of polycrystalline wurtzite. As for AFM tests results for the topography of the surface of the film, where the results showed that the grain size and the average roughness increase with increasing laser energy. The optical properties of all films were also studied and the results showed that the absorption coefficient for within the wavelength range (280-1100 nm), The value of the optical power gap fo
... Show MoreCZTS / CdS / ZnO / ITO solar cell was studied using Solar Cell Capacitance Simulato-1D (SCAPS-1D) program. We performed an improvement on the theoretical cell by increasing the doping and thickness of some layers. As a result, the efficiency was shifted from 2.18% to 6.17% and several back reflection layers (BSL) were introduced on the enhanced cell until. We obtained a highest conversion efficiency of 13.99%. The best reflection layer (CZTSSe) was combined with the best buffer layer (CdSe), with thickness of 0.9µm, on the enhanced cell. Thereby, we obtained a cell with a conversion efficiency of 16.53%. A second improvement was made to the best obtained cell, where the CZTSSe with thickness of 0.05µm and the CdSe with thickness
... Show MoreThis research has presented a solution to the problem faced by alloys: the corrosion problem, by reducing corrosion and enhancing protection by using an inhibitor (Schiff base). The inhibitor (Schiff base) was synthesized by reacting of the substrates materials (4-dimethylaminobenzaldehyde and 4-aminoantipyrine). It was diagnosed by infrared technology IR, where the IR spectrum and through the visible beams proved that the Schiff base was well formed and with high purity. The corrosion behavior of carbon steel and stainless steel in a saline medium (artificial seawater 3.5%NaCl) before and after using the inhibitor at four temperatures: 20, 30, 40, and 50 C° was studied by using three electrodes potentiostat. The corrosion behavior was
... Show MoreThe Topography, Physical and Optical properties of as-deposited copper oxide CuO absorption layer sprayed using homemade fully computerized CNC spray pyrolysis deposition technique at different deposition speed are reported. These layers are characterized by UV-Visible spectrophotometer, optical microscope, and thickness monitor studies. The optical transmittance study indicates that these layer exhibit high absorption coefficient in the visible range. The optical band gap is found to be at about at speeds (3,6 mm/s). Better homogeneity in CuO layer is found at the speed 5 mm/s. The film thickness lies within the 129-412 nm range.
Aqueous root extract has been used to examine the green production of silver nanoparticles (AgNPs) by reducing the Ag+ ions in a silver nitrate solution. UV-Vis spectroscopy, X-ray diffraction, field emission scanning electron microscopy, and Fourier transform infrared spectroscopy (FTIR) were used to analyze the produced AgNPs. The AgNPs that were created had a maximum absorbance at 416 nm, were spherical in form, polydispersed in nature, and were 685 nm in size.The AgNPs demonstrated antibacterial efficacy against Escherichia coli and Staphylococcus. The dengue vector Aedes aegypti's second instar larvae were very susceptible to the AgNPs' powerful larvicidal action.