Preferred Language
Articles
/
ijcpe-85
Permeability Prediction in One of Iraqi Carbonate Reservoir Using Hydraulic Flow Units and Neural Networks
...Show More Authors

Permeability determination in Carbonate reservoir is a complex problem, due to their capability to be tight and heterogeneous, also core samples are usually only available for few wells therefore predicting permeability with low cost and reliable accuracy is an important issue, for this reason permeability predictive models become very desirable.

   This paper will try to develop the permeability predictive model for one of  Iraqi carbonate reservoir from core and well log data using the principle of Hydraulic Flow Units (HFUs). HFU is a function of Flow Zone Indicator (FZI) which is a good parameter to determine (HFUs).

   Histogram analysis, probability analysis and Log-Log plot of Reservoir Quality Index (RQI) versus normalized porosity (øz) are presented to identify optimal hydraulic flow units. Four HFUs were distinguished in this study area with good correlation coefficient for each HFU (R2=0.99), therefore permeability can be predicted from porosity accurately if rock type is known.

   Conventional core analysis and well log data were obtained in well 1 and 2 in one of carbonate Iraqi oil field. The relationship between core and well log data was determined by Artificial Neural Network (ANN) in cored wells to develop the predictive model and then was used to develop the flow units prediction to un-cored wells. Finally permeability can be calculated in each HFU using effective porosity and mean FZI in these HFUs. Validation of the models evaluated in a separate cored well (Blind-Test) which exists in the same formation. The results showed that permeability prediction from ANN and HFU matched well with the measured permeability from core data with R2 =0.94 and ARE= 1.04%.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jan 27 2019
Journal Name
Civil Engineering Journal
Prediction of Sediment Accumulation Model for Trunk Sewer Using Multiple Linear Regression and Neural Network Techniques
...Show More Authors

Sewer sediment deposition is an important aspect as it relates to several operational and environmental problems. It concerns municipalities as it affects the sewer system and contributes to sewer failure which has a catastrophic effect if happened in trunks or interceptors. Sewer rehabilitation is a costly process and complex in terms of choosing the method of rehabilitation and individual sewers to be rehabilitated.  For such a complex process, inspection techniques assist in the decision-making process; though, it may add to the total expenditure of the project as it requires special tools and trained personnel. For developing countries, Inspection could prohibit the rehabilitation proceeds. In this study, the researchers propos

... Show More
View Publication
Scopus (18)
Crossref (14)
Scopus Clarivate Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of The Mechanical Behavior Of Materials
Groundwater flow modeling and hydraulic assessment of Al-Ruhbah region, Iraq
...Show More Authors
Abstract<p>Al-Ruhbah region is located in the southwest of Najaf Governorate. A numerical model was created to simulate groundwater flow and analyze the water quality of the groundwater, by developing a conceptual model within the groundwater modeling system software. Nineteen wells were used, 15 for pumping and four for observation. A three-dimensional model was built based on the cross-sections indicating the geologic layers of the study area, which were composed of five layers. When a distance of 1,000 m between the wells was adopted, 135 wells can be operated simultaneously. These wells were hypothetically operated at 6, 12, and 18 h intervals, with a discharge of 200, 430, and 650 m<j></j></p> ... Show More
Scopus (4)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Wed Dec 27 2017
Journal Name
Al-khwarizmi Engineering Journal
Human Face Recognition Using GABOR Filter And Different Self Organizing Maps Neural Networks
...Show More Authors

 

This work implements the face recognition system based on two stages, the first stage is feature extraction stage and the second stage is the classification stage. The feature extraction stage consists of Self-Organizing Maps (SOM) in a hierarchical format in conjunction with Gabor Filters and local image sampling. Different types of SOM’s were used and a comparison between the results from these SOM’s was given.

The next stage is the classification stage, and consists of self-organizing map neural network; the goal of this stage is to find the similar image to the input image. The proposal method algorithm implemented by using C++ packages, this work is successful classifier for a face database consist of 20

... Show More
View Publication Preview PDF
Publication Date
Mon Dec 01 2008
Journal Name
Journal Of Economics And Administrative Sciences
Neural Networks as a Discriminant Purposes
...Show More Authors

Discriminant between groups is one of the common procedures because of its ability to analyze many practical phenomena, and there are several methods can be used for this purpose, such as linear and quadratic discriminant functions. recently, neural networks is used as a tool to distinguish between groups.

In this paper the simulation is used to compare neural networks and classical method for classify observations to group that is belong to, in case of some variables that don’t follow the normal distribution. we use the proportion of number of misclassification observations to the all observations as a criterion of comparison.  

 

 

View Publication Preview PDF
Crossref
Publication Date
Sun Dec 29 2019
Journal Name
Iraqi Journal Of Science
Reservoir units of Mishrif Formation in Majnoon Oil field, Southern Iraq
...Show More Authors

The reservoir units of Mishrif Formation in Majnoon oil field were studied by using available wireline logs (gamma ray, porosity and resistivity) and facies that derived from core and cutting samples for three wells including Mj-1, Mj-15, and Mj-20. The reservoir properties were determined and interpreted by using IP software. The results showed that unit D have the best reservoir properties due to high effective porosity, low water saturation and very low volume of shale. Furthermore, a large part of this unit was deposited in shoal environment. The other reservoir units are then graded in reservoir properties including units B, A, F & E respectively, except unit C, which is considered as a cap unit, because it consists of rest

... Show More
Scopus (14)
Crossref (13)
Scopus Crossref
Publication Date
Mon Dec 24 2018
Journal Name
Civil Engineering Journal
Artificial Neural Network Model for the Prediction of Groundwater Quality
...Show More Authors

The present article delves into the examination of groundwater quality, based on WQI, for drinking purposes in Baghdad City. Further, for carrying out the investigation, the data was collected from the Ministry of Water Resources of Baghdad, which represents water samples drawn from 114 wells in Al-Karkh and Al-Rusafa sides of Baghdad city. With the aim of further determining WQI, four water parameters such as (i) pH, (ii) Chloride (Cl), (iii) Sulfate (SO4), and (iv) Total dissolved solids (TDS), were taken into consideration. According to the computed WQI, the distribution of the groundwater samples, with respect to their quality classes such as excellent, good, poor, very poor and unfit for human drinking purpose, was found to be

... Show More
View Publication
Crossref (30)
Clarivate Crossref
Publication Date
Sat Sep 30 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Petrophysical Analysis Based on Well Logging Data for Tight Carbonate Reservoir: The SADI Formation Case in Halfaya Oil Field
...Show More Authors

Carbonate reservoirs are an essential source of hydrocarbons worldwide, and their petrophysical properties play a crucial role in hydrocarbon production. Carbonate reservoirs' most critical petrophysical properties are porosity, permeability, and water saturation. A tight reservoir refers to a reservoir with low porosity and permeability, which means it is difficult for fluids to move from one side to another. This study's primary goal is to evaluate reservoir properties and lithological identification of the SADI Formation in the Halfaya oil field. It is considered one of Iraq's most significant oilfields, 35 km south of Amarah. The Sadi formation consists of four units: A, B1, B2, and B3. Sadi A was excluded as it was not filled with h

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Tue May 01 2018
Journal Name
Journal Of Engineering
Prediction of Municipal Solid Waste Generation Models Using Artificial Neural Network in Baghdad city, Iraq
...Show More Authors

The importance of Baghdad city as the capital of Iraq and the center of the attention of delegations because of its long history is essential to preserve its environment. This is achieved through the integrated management of municipal solid waste since this is only possible by knowing the quantities produced by the population on a daily basis. This study focused to predicate the amount of municipal solid waste generated in Karkh and Rusafa separately, in addition to the quantity produced in Baghdad, using IBM SPSS 23 software. Results that showed the average generation rates of domestic solid waste in Rusafa side was higher than that of Al-Karkh side because Rusafa side has higher population density than Al-Karkh side. T

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Thu Oct 01 2020
Journal Name
Journal Of Engineering Science And Technology
Water quality assessment and sodium adsorption ratio prediction of Tigris River using artificial neural network
...Show More Authors

Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
On Training Of Feed Forward Neural Networks
...Show More Authors

In this paper we describe several different training algorithms for feed forward neural networks(FFNN). In all of these algorithms we use the gradient of the performance function, energy function, to determine how to adjust the weights such that the performance function is minimized, where the back propagation algorithm has been used to increase the speed of training. The above algorithms have a variety of different computation and thus different type of form of search direction and storage requirements, however non of the above algorithms has a global properties which suited to all problems.

View Publication Preview PDF