Preferred Language
Articles
/
ijcpe-85
Permeability Prediction in One of Iraqi Carbonate Reservoir Using Hydraulic Flow Units and Neural Networks
...Show More Authors

Permeability determination in Carbonate reservoir is a complex problem, due to their capability to be tight and heterogeneous, also core samples are usually only available for few wells therefore predicting permeability with low cost and reliable accuracy is an important issue, for this reason permeability predictive models become very desirable.

   This paper will try to develop the permeability predictive model for one of  Iraqi carbonate reservoir from core and well log data using the principle of Hydraulic Flow Units (HFUs). HFU is a function of Flow Zone Indicator (FZI) which is a good parameter to determine (HFUs).

   Histogram analysis, probability analysis and Log-Log plot of Reservoir Quality Index (RQI) versus normalized porosity (øz) are presented to identify optimal hydraulic flow units. Four HFUs were distinguished in this study area with good correlation coefficient for each HFU (R2=0.99), therefore permeability can be predicted from porosity accurately if rock type is known.

   Conventional core analysis and well log data were obtained in well 1 and 2 in one of carbonate Iraqi oil field. The relationship between core and well log data was determined by Artificial Neural Network (ANN) in cored wells to develop the predictive model and then was used to develop the flow units prediction to un-cored wells. Finally permeability can be calculated in each HFU using effective porosity and mean FZI in these HFUs. Validation of the models evaluated in a separate cored well (Blind-Test) which exists in the same formation. The results showed that permeability prediction from ANN and HFU matched well with the measured permeability from core data with R2 =0.94 and ARE= 1.04%.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Jan 01 2014
Journal Name
International Journal Of Computer Applications
Mobile Position Estimation based on Three Angles of Arrival using an Interpolative Neural Network
...Show More Authors

In this paper, the memorization capability of a multilayer interpolative neural network is exploited to estimate a mobile position based on three angles of arrival. The neural network is trained with ideal angles-position patterns distributed uniformly throughout the region. This approach is compared with two other analytical methods, the average-position method which relies on finding the average position of the vertices of the uncertainty triangular region and the optimal position method which relies on finding the nearest ideal angles-position pattern to the measured angles. Simulation results based on estimations of the mobile position of particles moving along a nonlinear path show that the interpolative neural network approach outperf

... Show More
Publication Date
Sat Jan 01 2022
Journal Name
International Middle Eastern Simulation And Modelling Conference 2022, Mesm 2022,
MECHANICS OF COMPOSITE PLATE STRUCTURE REINFORCED WITH HYBRID NANO MATERIALS USING ARTIFICIAL NEURAL NETWORK
...Show More Authors

Scopus (1)
Scopus
Publication Date
Wed Oct 01 2014
Journal Name
Engineering And Technology Journal
Investigating Forward kinematic Analysis of a 5-axes Robotic Manipulator using Denavit-Hartenberg Method and Artificial Neural Network
...Show More Authors

View Publication
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Ieee Access
Total Dissolved Salt Prediction Using Neurocomputing Models: Case Study of Gypsum Soil Within Iraq Region
...Show More Authors

View Publication
Scopus (14)
Crossref (15)
Scopus Clarivate Crossref
Publication Date
Wed Jun 07 2023
Journal Name
Journal Of The Turkish-german Gynecological Association
Maternal and neonatal outcomes in adolescent pregnant women with one prior Cesarean section in Baghdad
...Show More Authors

View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun Nov 01 2015
Journal Name
Journal Of Engineering
Numerical Simulation of Flow in Rectangular Duct with Different Obstruction Heights
...Show More Authors

       In this study, a simulation model inside a channel of rectangular section with high of (0.16 m) containing two rectangular obstruction plates were aligned variable heights normal to the direction of flow, use six model of the obstructions height of (0.059, 0.066, 0.073, 0.08 and 0.087 m) were compared with the flow behavior of the same duct without obstructions. To predict the velocity profile, pressure distribution, pressure coefficient and turbulence kinetic energy flow of air, the differential equations which describe the flow were approximated by the finite volumes method for two dimensional, by using commercial software package (FLUENT) with standard of k-ε model two dimensions turbulence flow.

... Show More
View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Studies In Systems, Decision And Control
The Effect of Using an Accounting Information System Based on Artificial Intelligence in Detecting Earnings Management to Enhance the Sustainability of Economic Units
...Show More Authors

This research aims to clarify the importance of an accounting information system that uses artificial intelligence to detect earnings manipulation. The research problem stems from the widespread manipulation of earning in economic entities, especially at the local level, exacerbated by the high financial and administrative corruption rates in Iraq due to fraudulent accounting practices. Since earning manipulation involves intentional fraudulent acts, it is necessary to implement preventive measures to detect and deter such practices. The main hypothesis of the research assumes that an accounting information system based on artificial intelligence cannot effectively detect the manipulation of profits in Iraqi economic entities. The researche

... Show More
View Publication
Scopus (1)
Crossref (2)
Scopus Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Baghdad Science Journal
Determining ACE-2 Level and Some Relevant Biochemical Parameters and studying the effect of Gender in Iraqi Diabetic Patients with Glomeruli and Renal Tubules Fibrosis as Early Prediction Marker
...Show More Authors

     Diabetic kidney disease is an illness of the glomerulus that interferes with the glomerular filtration barrier (GFB), which is worked to enable kidney to selective purification of water and solutes in addition to limiting the movement of large macromolecules such as albumin. In the glomerular endothelium, mesangial cells, foot cells, and the brush border of the proximal tubules, ACE-2 is expressed and that the kidneys represent the highest-expressing region of this enzyme. Thus, the current study aimed to evaluate ACE-2 level in this case compared to healthy condition. The study Conducted with 120 male and female ranging in age (30-65) years old. Ninety patients with type 2 diabetes subdivided into three groups on the basis of A

... Show More
View Publication Preview PDF
Scopus (5)
Scopus Crossref
Publication Date
Sat Dec 02 2017
Journal Name
Al-khwarizmi Engineering Journal
Mathematical Modeling for the Clarifier Units and Turbidity Parameters in AL-KARAMA Treatment Plant
...Show More Authors

The high cost of chemical analysis of water has necessitated various researches into finding alternative method of determining portable water quality. This paper is aimed at modelling the turbidity value as a water quality parameter. Mathematical models for turbidity removal were developed based on the relationships between water turbidity and other water criteria. Results showed that the turbidity of water is the cumulative effect of the individual parameters/factors affecting the system. A model equation for the evaluation and prediction of a clarifier’s performance was developed:

Model: T = T0(-1.36729 + 0.037101∙10λpH + 0.048928t + 0.00741387∙alk)

The developed model will aid the predictiv

... Show More
View Publication Preview PDF
Publication Date
Thu Jan 31 2019
Journal Name
Journal Of Engineering
Design of New Hybrid Neural Structure for Modeling and Controlling Nonlinear Systems
...Show More Authors

This paper proposes a new structure of the hybrid neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Weight parameters of the hybrid neural structure with its serial-parallel configuration are adapted by using the Back propagation learning algorithm. The ability of the proposed hybrid neural structure for nonlinear system has achieved a fast learning with minimum number

... Show More
View Publication Preview PDF
Crossref