Preferred Language
Articles
/
ijcpe-85
Permeability Prediction in One of Iraqi Carbonate Reservoir Using Hydraulic Flow Units and Neural Networks
...Show More Authors

Permeability determination in Carbonate reservoir is a complex problem, due to their capability to be tight and heterogeneous, also core samples are usually only available for few wells therefore predicting permeability with low cost and reliable accuracy is an important issue, for this reason permeability predictive models become very desirable.

   This paper will try to develop the permeability predictive model for one of  Iraqi carbonate reservoir from core and well log data using the principle of Hydraulic Flow Units (HFUs). HFU is a function of Flow Zone Indicator (FZI) which is a good parameter to determine (HFUs).

   Histogram analysis, probability analysis and Log-Log plot of Reservoir Quality Index (RQI) versus normalized porosity (øz) are presented to identify optimal hydraulic flow units. Four HFUs were distinguished in this study area with good correlation coefficient for each HFU (R2=0.99), therefore permeability can be predicted from porosity accurately if rock type is known.

   Conventional core analysis and well log data were obtained in well 1 and 2 in one of carbonate Iraqi oil field. The relationship between core and well log data was determined by Artificial Neural Network (ANN) in cored wells to develop the predictive model and then was used to develop the flow units prediction to un-cored wells. Finally permeability can be calculated in each HFU using effective porosity and mean FZI in these HFUs. Validation of the models evaluated in a separate cored well (Blind-Test) which exists in the same formation. The results showed that permeability prediction from ANN and HFU matched well with the measured permeability from core data with R2 =0.94 and ARE= 1.04%.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Dec 31 2024
Journal Name
Journal Of Soft Computing And Computer Applications
Enhancing Image Classification Using a Convolutional Neural Network Model
...Show More Authors

In recent years, with the rapid development of the current classification system in digital content identification, automatic classification of images has become the most challenging task in the field of computer vision. As can be seen, vision is quite challenging for a system to automatically understand and analyze images, as compared to the vision of humans. Some research papers have been done to address the issue in the low-level current classification system, but the output was restricted only to basic image features. However, similarly, the approaches fail to accurately classify images. For the results expected in this field, such as computer vision, this study proposes a deep learning approach that utilizes a deep learning algorithm.

... Show More
View Publication
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Proceedings Of International Conference On Computing And Communication Networks
Speech Age Estimation Using a Ranking Convolutional Neural Network
...Show More Authors

View Publication
Scopus (3)
Scopus Clarivate Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Reviews In Agricultural Science
Technological Advances in Soil Penetration Resistance Measurement and Prediction Algorithms
...Show More Authors

Soil compaction is one of the most harmful elements affecting soil structure, limiting plant growth and agricultural productivity. It is crucial to assess the degree of soil penetration resistance to discover solutions to the harmful consequences of compaction. In order to obtain the appropriate value, using soil cone penetration requires time and labor-intensive measurements. Currently, satellite technologies, electronic measurement control systems, and computer software help to measure soil penetration resistance quickly and easily within the precision agriculture applications approach. The quantitative relationships between soil properties and the factors affecting their diversity contribute to digital soil mapping. Digital soil maps use

... Show More
View Publication
Scopus (11)
Crossref (9)
Scopus Crossref
Publication Date
Sun Jun 30 2019
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Performance of Subsurface Flow Constructed Wetland Systems in the Treatment of Al-Rustumia Municipal Wastewater using Continuous Loading Feed
...Show More Authors

This study aimed at comparing the performance of vertical, horizontal and hybrid subsurface flow systems in secondary treatment for the effluent wastewater from the primary basins at Al-Rustumia wastewater treatment plant, Baghdad, Iraq. The treatments were monitored for six weeks while the testsduration were from 4 to 12 September 2018 under continuous wastewater feeding for chemical oxygen demand (COD), total suspended solid (TSS),ammonia-nitrogen(NH4-N) and phosphate (PO4-P) in comparison with FAO and USEPA standards for effluent discharge to evaluate the suitability of treated water for irrigation purposes. Among the systems planted with Phragmites Australia, the hybrid subsurface flow system which cons

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Baghdad Science Journal
In vitro isolation and expansion of neural stem cells NSCs
...Show More Authors

   Neural stem cells (NSCs) are progenitor cells which have the ability to self‑renewal and potential for differentiating into neurons, oligodendrocytes, and astrocytes. The in vitro isolation, culturing, identification, cryopreservation were investigated to produce neural stem cells in culture as successful sources for further studies before using it for clinical trials. In this study, mouse bone marrow was the source of neural stem cells. The results of morphological study and immunocytochemistry of isolated cells showed that NSCs can be produced successfully and maintaining their self‑renewal and successfully forming neurosphere for multiple passages. The spheres preserved their morphology in culture and cryopreserved t

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Thu Aug 01 2024
Journal Name
Water Practice & Technology
Artificial neural network and response surface methodology for modeling oil content in produced water from an Iraqi oil field
...Show More Authors
ABSTRACT<p>The majority of the environmental outputs from gas refineries are oily wastewater. This research reveals a novel combination of response surface methodology and artificial neural network to optimize and model oil content concentration in the oily wastewater. Response surface methodology based on central composite design shows a highly significant linear model with P value &lt;0.0001 and determination coefficient R2 equal to 0.747, R adjusted was 0.706, and R predicted 0.643. In addition from analysis of variance flow highly effective parameters from other and optimization results verification revealed minimum oily content with 8.5 ± 0.7 ppm when initial oil content 991 ppm, tempe</p> ... Show More
View Publication
Scopus (10)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Fri Dec 30 2022
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Normalize and De-Normalize of Relative Permeability Data for Mishrif Formation in WQ1: An Experimental Work
...Show More Authors

In many oil-recovery systems, relative permeabilities (kr) are essential flow factors that affect fluid dispersion and output from petroleum resources. Traditionally, taking rock samples from the reservoir and performing suitable laboratory studies is required to get these crucial reservoir properties. Despite the fact that kr is a function of fluid saturation, it is now well established that pore shape and distribution, absolute permeability, wettability, interfacial tension (IFT), and saturation history all influence kr values. These rock/fluid characteristics vary greatly from one reservoir region to the next, and it would be impossible to make kr measurements in all of them. The unsteady-state approach was used to calculate the relat

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Sep 01 2010
Journal Name
Al-khwarizmi Engineering Journal
Prediction of the Scale Removal Rate in Heat Exchanger Piping System Using the Analogies between Mass and Momentum Transfer
...Show More Authors

The possibility of predicting the mass transfer controlled CaCO3 scale removal   rate has been investigated.

Experiments were carried out using chelating agents as a cleaning solution at different time and Reynolds’s number. The results of CaCO3 scale removal or (mass transfer rate) (as it is the controlling process) are compared with proposed model of prandtl’s and Taylor particularly based on the concept of analogy among momentum and mass transfer.

Correlation for the variation of Sherwood number ( or mass transfer rate ) with Reynolds’s number have been obtained .

View Publication Preview PDF
Publication Date
Tue Jan 01 2019
Journal Name
Opción
Phraseological units of the idafa type in the Quran
...Show More Authors

Scopus
Publication Date
Mon Jan 01 2018
Journal Name
Communications In Computer And Information Science
Automatically Recognizing Emotions in Text Using Prediction by Partial Matching (PPM) Text Compression Method
...Show More Authors

In this paper, we investigate the automatic recognition of emotion in text. We perform experiments with a new method of classification based on the PPM character-based text compression scheme. These experiments involve both coarse-grained classification (whether a text is emotional or not) and also fine-grained classification such as recognising Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method significantly outperforms the traditional word-based text classification methods. The results show that the PPM compression based classification method is able to distinguish between emotional and nonemotional text with high accuracy, between texts invo

... Show More
View Publication
Scopus (2)
Crossref (3)
Scopus Clarivate Crossref