Preferred Language
Articles
/
ijcpe-85
Permeability Prediction in One of Iraqi Carbonate Reservoir Using Hydraulic Flow Units and Neural Networks
...Show More Authors

Permeability determination in Carbonate reservoir is a complex problem, due to their capability to be tight and heterogeneous, also core samples are usually only available for few wells therefore predicting permeability with low cost and reliable accuracy is an important issue, for this reason permeability predictive models become very desirable.

   This paper will try to develop the permeability predictive model for one of  Iraqi carbonate reservoir from core and well log data using the principle of Hydraulic Flow Units (HFUs). HFU is a function of Flow Zone Indicator (FZI) which is a good parameter to determine (HFUs).

   Histogram analysis, probability analysis and Log-Log plot of Reservoir Quality Index (RQI) versus normalized porosity (øz) are presented to identify optimal hydraulic flow units. Four HFUs were distinguished in this study area with good correlation coefficient for each HFU (R2=0.99), therefore permeability can be predicted from porosity accurately if rock type is known.

   Conventional core analysis and well log data were obtained in well 1 and 2 in one of carbonate Iraqi oil field. The relationship between core and well log data was determined by Artificial Neural Network (ANN) in cored wells to develop the predictive model and then was used to develop the flow units prediction to un-cored wells. Finally permeability can be calculated in each HFU using effective porosity and mean FZI in these HFUs. Validation of the models evaluated in a separate cored well (Blind-Test) which exists in the same formation. The results showed that permeability prediction from ANN and HFU matched well with the measured permeability from core data with R2 =0.94 and ARE= 1.04%.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Mar 01 2015
Journal Name
Sust Journal Of Engineering And Computer Science (jecs)
Virtual failure influence of Roseires dam on Khartoum city using HEC-RAS Hydraulic simulation modeling
...Show More Authors

Dam break is series phenomenon that can result in fatal consequences and loss of properties. Unfortunately, the observed consequences can only be available after the dam breaks. Therefore, it is important to anticipate what will happen prior to dam break to issue suitable warning and locate the possible risk areas. This study attempts to simulate the case of dam break in Blue Nile at Roseires dam and see its consequences downstream. Roseires dam lies at a distance of 630 km south of Khartoum, Sennar dam lies at about 260 km downstream of Roseires dam. In this study hydraulic model is developed based of Hydraulic Engineering Centre (HEC), River Analysis System (RAS), and HEC- RAS. The HEC-RAS based model is calibrated and validated usi

... Show More
Publication Date
Sat May 09 2015
Journal Name
International Journal Of Innovations In Scientific Engineering
USING ARTIFICIAL NEURAL NETWORK TECHNIQUE FOR THE ESTIMATION OF CD CONCENTRATION IN CONTAMINATED SOILS
...Show More Authors

The aim of this paper is to design artificial neural network as an alternative accurate tool to estimate concentration of Cadmium in contaminated soils for any depth and time. First, fifty soil samples were harvested from a phytoremediated contaminated site located in Qanat Aljaeesh in Baghdad city in Iraq. Second, a series of measurements were performed on the soil samples. The inputs are the soil depth, the time, and the soil parameters but the output is the concentration of Cu in the soil for depth x and time t. Third, design an ANN and its performance was evaluated using a test data set and then applied to estimate the concentration of Cadmium. The performance of the ANN technique was compared with the traditional laboratory inspecting

... Show More
View Publication
Publication Date
Thu Jun 01 2023
Journal Name
Ifip Advances In Information And Communication Technology
Rapid Thrombogenesis Prediction in Covid-19 Patients Using Machine Learning
...Show More Authors

Machine Learning (ML) algorithms are increasingly being utilized in the medical field to manage and diagnose diseases, leading to improved patient treatment and disease management. Several recent studies have found that Covid-19 patients have a higher incidence of blood clots, and understanding the pathological pathways that lead to blood clot formation (thrombogenesis) is critical. Current methods of reporting thrombogenesis-related fluid dynamic metrics for patient-specific anatomies are based on computational fluid dynamics (CFD) analysis, which can take weeks to months for a single patient. In this paper, we propose a ML-based method for rapid thrombogenesis prediction in the carotid artery of Covid-19 patients. Our proposed system aims

... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Tue Sep 01 2020
Journal Name
Baghdad Science Journal
Developing Arabic License Plate Recognition System Using Artificial Neural Network and Canny Edge Detection
...Show More Authors

            In recent years, there has been expanding development in the vehicular part and the number of vehicles moving on the roads in all the sections of the country. Arabic vehicle number plate identification based on image processing is a dynamic area of this work; this technique is used for security purposes such as tracking of stolen cars and access control to restricted areas. The License Plate Recognition System (LPRS) exploits a digital camera to capture vehicle plate numbers is used as input to the proposed recognition system. Basically, the proposed system consists of three phases, vehicle license plate localization, character segmentation, and character recognition, the

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Mon Mar 29 2021
Journal Name
Journal Of Engineering
Numerical Simulation of Water Distribution with Uptake Root in Drip Irrigation using Different Soil Hydraulic Models
...Show More Authors

Surface drip irrigation is one of the most conservative irrigation techniques that help control providing water directly on the soil through the emitters. It can supply fertilizer and providing water directly to plant roots by drippers. One of the essential needs for trickle irrigation nowadays is to obtain more knowledge about the moisture pattern under the trickling source for various types of soil with various discharge levels with trickle irrigation. Simulation numerical using HYDRUS-2D software, version 2.04 was used to estimate an equation for the wetted area from a single surface drip irrigation in unsaturated soil is taking into account water uptake by roots. In this paper, using two soil types were used, namely

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
Water Flow Visualization And Velocity Measurement Using Hydrogen Bubble Generation Technique In Low Speed Open Channel
...Show More Authors

Visualization of water flow around different bluff bodies at different Reynolds number ranging (1505 - 2492) was realized by designing and building a test rig which contains an open channel capable to ensure water velocity range (4-8cm/s) in this channel. Hydrogen bubbles generated from the ionized water using DC power supply are visualized by a light source and photographed by a digital camera. Flow pattern around a circular disk of (3.6cm) diameter and (3mm) thickness, a sphere of (3.8cm) diameter and a cylinder of
(3.2cm) diameter and (10cm) length are studied qualitatively. Parameters of the vortex ring generated in the wake region of the disk and the separation angle of water stream lines from the surface of the sphere are plott

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Mar 26 2023
Journal Name
Wasit Journal Of Pure Sciences
Covid-19 Prediction using Machine Learning Methods: An Article Review
...Show More Authors

The COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our system

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sat Dec 31 2016
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
The Effect of In-situ Stress on Hydraulic Fractures Dimensions
...Show More Authors

Understanding of in-situ stress profiles and orientations plays a vital role in designing a successful hydraulic fracturing treatment. This paper is an attempet to examine the effect of lithology and in situ stress on geometery of hydraulic fractures. A hydraulic fracturing design simulator software called FracproPT with various capabilities for designing most of hydraulic fracture was used for  simulate and optimize the hydraulic fracturing. For studying purpose,  three different cases of stress gradient contrast between different formations  are considered in this study (0.4, 0.5 and 0.75 psi/ft). The results obtained from the simulator showed that  lithologies surrounding the pay zone have an effect on the fracture

... Show More
View Publication Preview PDF
Publication Date
Wed Dec 11 2013
Journal Name
Proceeding Of The 2nd International Conference On Iraq Oil Studies
Diagnosing Complex Flow Characteristics of Mishrif Formation in Stimulated Well Using Production Logging Tool
...Show More Authors

Production logging is used to diagnose well production problems by evaluating the flow profile, entries of unwanted fluids and downhole flow regimes. Evaluating wells production performance can be easily induce from production logs through interpretation of production log data to provide velocity profile and contribution of each zone on total production. Production logging results supply information for reservoir modeling, provide data to optimize the productivity of existing wells and plan drilling and completion strategies for future wells. Production logging was carried out in a production oil well from Mishrif formation of West Qurna field, with the objective to determine the flow profile and fluid contributions from the perforations af

... Show More
Publication Date
Thu Dec 01 2022
Journal Name
Baghdad Science Journal
Diagnosing COVID-19 Infection in Chest X-Ray Images Using Neural Network
...Show More Authors

With its rapid spread, the coronavirus infection shocked the world and had a huge effect on billions of peoples' lives. The problem is to find a safe method to diagnose the infections with fewer casualties. It has been shown that X-Ray images are an important method for the identification, quantification, and monitoring of diseases. Deep learning algorithms can be utilized to help analyze potentially huge numbers of X-Ray examinations. This research conducted a retrospective multi-test analysis system to detect suspicious COVID-19 performance, and use of chest X-Ray features to assess the progress of the illness in each patient, resulting in a "corona score." where the results were satisfactory compared to the benchmarked techniques.  T

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (2)
Scopus Clarivate Crossref