In this study, successive electrocoagulation (EC) and electro-oxidation (EO) processes were used to minimize some of the major pollutants in real wastewater, such as organics (detected by chemical oxygen demand (COD)), and turbidity. The wastewater utilized in the present study was collected from the Midland Refinery Company in Baghdad-Iraq. The performance of the successive batch EC-EO processes was studied by utilizing Graphite and Aluminum (Al) as monopolar anode electrodes and stainless steel (st.st.) as the cathode. The Taguchi experimental design approach was used to attain the best experimental conditions for COD reduction as a major response. Starting from chemical oxygen demand COD of (600 ppm), the effects of current density (C.D.) (10- 20 mA/cm2), pH (4- 10), time (2– 4 h), and NaCl concentration (1.5- 2.5 g/l) on the efficiency of COD reduction were examined. The results indicated that COD reduction increased with increasing C.D., NaCl conc., and electrolysis time and increased exponentially at pH (4). The best conditions for the treatment of this wastewater were: C.D. (20 mA/cm2), pH (4), time (4 h), and NaCl conc. (2.5 g/l). At these conditions, approximately 98.12 % of COD reduction was achieved with electrical energy consumption (ENC) of about 62.04 kWh/m3. The result of analysis of variance (ANOVA) revealed that the C.D. and pH have a higher influence on the performance of organics removal, while the time and NaCl conc. have a minor impact on COD Re%.
The optimization of artificial gas lift techniques plays a crucial role in the advancement of oil field development. This study focuses on investigating the impact of gas lift design and optimization on production outcomes within the Mishrif formation of the Halfaya oil field. A comprehensive production network nodal analysis model was formulated using a PIPESIM Optimizer-based Genetic Algorithm and meticulously calibrated utilizing field-collected data from a network comprising seven wells. This well group encompasses three directional wells currently employing gas lift and four naturally producing vertical wells. To augment productivity and optimize network performance, a novel gas lift design strategy was proposed. The optimization of
... Show MoreThis work deals with determination of optimum conditions of direct diffusion bonding welding of austenitic stainlesssteel type AISI 304L with Oxygen Free High Conductivity (OFHC) pure copper grade (C10200) in vacuum atmosphere of (1.5 *10-5 mbr.). Mini tab (response surface) was applied for optimizing the influence of diffusion bonding parameters (temperature, time and applied load) on the bonding joints characteristics and the empirical relationship was evaluated which represents the effect of each parameter of the process. The yield strength of diffusion bonded joint was equal to 153 MPa and the efficiency of joint was equal to 66.5% as compared with hard drawn copper. The diffusion zone reveals high microhardness than coppe
... Show MoreIn medical practice, nonsteroidal anti-inflammatory drugs (NSAIDs) are often used to treat osteoarthritis and rheumatoid arthritis. Ibuprofen is a well-known NSAID, analgesic, and antipyretic medication. This chemical is an active ingredient of several oral medications that are offered in tablet, gel pellet, and syrup forms and has higher efficacy, tolerance, and side effect rates than other compounds, including pyrazolone derivatives. We present a unique plasma-assisted desorption/ionization mass spectrometry (PADI-MS) approach for improving pharmaceutically important solids using an ibuprofen tablet as a model solid sample. The goal of the study is to create an innovative mass spectrometric method that could be used for quick and accur
... Show MorePerformance of gas-solid spouted bed benefit from solids uniformity structure (UI).Therefore, the focus of this work is to maximize UI across the bed based on process variables. Hence, UI is to be considered as the objective of the optimization process .Three selected process variables are affecting the objective function. These decision variables are: gas velocity, particle density and particle diameter. Steady-state solids concentration measurements were carried out in a narrow 3-inch cylindrical spouted bed made of Plexiglas that used 60° conical shape base. Radial concentration of particles (glass and steel beads) at various bed heights and different flow patterns were measured using sophisticated optical probes. Stochastic Genetic
... Show MoreThe available experimental data of proton electronic stopping power for Polyethylene, Mylar, Kapton and Polystyrene are compared with Mathematica, SRIM2013, PSTAR and libdEdx programs or databases. The comparison involves sketching out both experimental and databases data for each polymer to discuss the agreement. Further, we use statistical means via standard deviation resulting from the mean normalized difference to describe the precise agreement among the databases and the experimental data. We found that there is not a specific one database can describe the experimental data for certain material at given proton energy.
Density Functional Theory (DFT) with B3LYP hybrid exchange-correlation functional and 3-21G basis set and semi-empirical methods (PM3) were used to calculate the energies (total energy, binding energy (Eb), molecular orbital energy (EHOMO-ELUMO), heat of formation (?Hf)) and vibrational spectra for some Tellurium (IV) compounds containing cycloctadienyl group which can use as ligands with some transition metals or essential metals of periodic table at optimized geometrical structures.
The goal of this investigation is to prepare zinc oxide (ZnO) nano-thin films by pulsed laser deposition (PLD) technique through Q-switching double frequency Nd:YAG laser (532 nm) wavelength, pulse frequency 6 Hz, and 300 mJ energy under vacuum conditions (10-3 torr) at room temperature. (ZnO) nano-thin films were deposited on glass substrates with different thickness of 300, 600 and 900 nm. ZnO films, were then annealed in air at a temperature of 500 °C for one hour. The results were compared with the researchers' previous theoretical study. The XRD analysis of ZnO nano-thin films indicated a hexagonal multi-crystalline wurtzite structure with preferential growth lines (100), (002), (101) for ZnO nano-thin films with different thi
... Show MoreThe erythrocyte aggregation is an important physiological phenomenon in the circulation of blood. It is a basic characteristic of normal blood that plays a major role in the cardiovascular system, especially in the microcirculation. This study explained the kinetics of single cells rouleaux formation one- dimensional aggregate and three- dimensional aggregate, during simultaneous, and the effect of hematocrit on the process of aggregation and sedimentation. The present study was done on forty one healthy subjects. Laser light is passed through a well mixed sample of blood and the forward scattered light intensities recorded continuously. The samples were prepared with different hematocrit, (10%, 15%, 20%, and 25%). Increasing
... Show MoreMyrtle plant was washed, dried, and powdered after harvesting to produce a fine powder that was used in water treatment. created an alcoholic extract from the myrtle plant using ethanol, which was then analyzed using GC-Mass, Fourier Transform Infrared spectroscopy, and ultraviolet-visible spectroscopy to identify the active components. Zinc nanoparticles were created using alcoholic extract. We used FTIR, UV-Vis, SEM, EDX, and TEM to characterize zinc nanoparticles. Using a continuous processing procedure, zinc nanoparticles with myrtle extract and powder were employed to clean polluted water containing heavy metals.
Firstly used 2g with 20ml polluted water and the result was ( Fe 96.20%, Cr 84%, Pb 100%, Sb 93.70, Cd 100%, andCu
... Show More