This study investigated the application of the crystallization process for oilfield produced water from the East Baghdad oilfield affiliated to the Midland Oil Company (Iraq). Zero liquid discharge system (ZLD) consists of several parts such as oil skimming, coagulation/flocculation, forward osmosis, and crystallization, the crystallization process is a final part of a zero liquid discharge system. The laboratory-scale simple evaporation system was used to evaluate the performance of the crystallization process. In this work, sodium chloride solution and East Baghdad oilfield produced water were used as a feed solution with a concentration of 177 and 220 g/l. The impact of temperature (70, 80, and 90 °C), mixing speed (300, 400, and 500 rpm), feed concentration (177 and 220 g/l), and time (0.5-9.5 h) on the crystallization performance for oilfield produced water treatment were investigated on evaporation rate and recovery. The recovery increased with increasing temperature and mixing speed while decreasing with an increase in feed concentration. Pure water and salts were recovered from the concentrated produced water, the recovery of pure water at 80 °C, 400 rpm, and 220 g/l feed concentration was 82.22 and 81.35% after 5.5 h for NaCl solution (i.e., simulated oilfield produced water) and oilfield produced water, respectively.
Energy savings are very common in IoT sensor networks because IoT sensor nodes operate with their own limited battery. The data transmission in the IoT sensor nodes is very costly and consume much of the energy while the energy usage for data processing is considerably lower. There are several energy-saving strategies and principles, mainly dedicated to reducing the transmission of data. Therefore, with minimizing data transfers in IoT sensor networks, can conserve a considerable amount of energy. In this research, a Compression-Based Data Reduction (CBDR) technique was suggested which works in the level of IoT sensor nodes. The CBDR includes two stages of compression, a lossy SAX Quantization stage which reduces the dynamic range of the
... Show MoreExtracting, studying and interpreting the morphological database of a basin is a basic building block for building a correct geomorphological understanding of this basin. In this work, Arc GIS 10.8 software and SRTM DEM satellite images were used. The principle of data integration was adopted by extracting the quantitative values of the morphometric characteristics that are affected by the geomorphological condition of the studied basin, then eliciting an optimal conception of the geomorphological condition of the basin from the meanings and connotations of these combined transactions. Hypsometric integration was extracted for each region in the basin separately with the value of integration of the plot curve for the relative heights of
... Show MoreSolar cells has been assembly with electrolytes including I−/I−3 redox duality employ polyacrylonitrile (PAN), ethylene carbonate (EC), propylene carbonate (PC), with double iodide salts of tetrabutylammonium iodide (TBAI) and Lithium iodide (LiI) and iodine (I2) were thoughtful for enhancing the efficiency of the solar cells. The rendering of the solar cells has been examining by alteration the weight ratio of the salts in the electrolyte. The solar cell with electrolyte comprises (60% wt. TBAI/40% wt. LiI (+I2)) display elevated efficiency of 5.189% under 1000 W/m2 light intensity. While the solar cell with electrolyte comprises (60% wt. LiI/40% wt. TBAI (+I2)) display a lower efficiency of 3.189%. The conductivity raises with the
... Show MoreCopper nanoparticles (CuNPs) were prepared with different diameters by sonoelectrodeposition technique using Electrodeposition process coupled with high-power ultrasound horn (Sonoelectrodeposition). The particle diameter of the CuNPs was adjusted by varying CuSO4 solution acidity (pH) and current density. The morphology and structure of the CuNPs were examined by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). It was found that the size of the produced copper nanoparticles ranged between 22 to 77 nm, where the diameter of CuNPs increases with reduction the solution acidity from 0.5 to 1.5 pH and increasing the current density of the deposition from 100 to 400 nm. Finally the produced CuNPs were pressed to fabricate disc
... Show MoreAlloys of GaxSb1-x system with different Ga concentration (x=0.4, 0.5, 0.6) have been prepared in evacuated quartz tubes. The structure of the alloys were examined by X-ray diffraction analysis (XRD) and found to be polycrystalline of zincblend structure with strong crystalline orientation (220). Thin films of GaxSb1-x system of about 1.0 μm thickness have been deposited by flash evaporation method on glass substrate at 473K substrate temperature (Ts) and under pressure 10-6 mbar. This study concentrated on the effect of Ga concentration (x) on some physical properties of GaxSb1-x thin films such as structural and optical properties. The structure of prepared films for various values of x was polycrystalline. The X-ray diffraction analy
... Show MoreAbstract:
Objectives: This study aims to (1) find out the association between patients' age, years of getting the disease, and their spiritual coping ability, and (2) investigate the differences in illness perception and spiritual coping ability between gender groups, level of education groups, monthly income groups, residence groups and satisfaction with health services groups.
Methodology
A descriptive correlational design is used in this study. The study sample includes a convenience sample of (158) patients with chronic kidney failure.
The study instrument consists of two parts; the first one focuses on participants’ sociodemographic characteristics, and the second part deals with participants’ spiritual coping by us
Advances in gamma imaging technology mean that is now technologically feasible to conduct stereoscopic gamma imaging in a hand-held unit. This paper derives an analytical model for stereoscopic pinhole imaging which can be used to predict performance for a wide range of camera configurations. Investigation of this concept through Monte Carlo and benchtop studies, for an example configuration, shows camera-source distance measurements with a mean deviation between calculated and actual distances of <5 mm for imaging distances of 50–250 mm. By combining this technique with stereoscopic optical imaging, we are then able to calculate the depth of a radioisotope source beneath a surfa