In recent years, it has been evident that searching for alternative methods with low-price and eco-friendly features that produce high-quality adsorbents is in high demand. In the present work, Rice husk from Iraqi rice named (Amber) had been used as the primary source to produce rice husk ash (RHA) for the removal of the antibiotic metronidazole (Flagyl) from water. After optimum drying of rice husk, rice husk ash (RHA) was obtained at 600 °C using an electric oven. RHA has been investigated for properties using X-ray diffraction (XRD), porosity, and surface area (SA). The experimental work adsorption data were optimized to evaluate Langmuir and Freundlich constants. The thermodynamic parameters likely a change in Gipp's energy (ΔG), enthalpy (ΔH), and entropy (ΔS). The impacts of increasing temperature on adsorption capacity were investigated, and the results indicate that the pseudo-second-order kinetics model could be presented the dynamic adsorption data that it has. The resultant values for the heat of adsorption and the free energy indicated that adsorption of Flagyl is preferred at low temperatures.
PMMA/TiO2 homogeneous thin films were deposited by using plasma jet system under normal atmospheric pressure and room temperature. PMMA/TiO2 nanocomposite thin film synthesized by plasma polymerization. Titanium oxide was mixed with Methyl Methacrylate Monomer (MMA) with specific weight ratios (1, 3 and 5 grams of TiO2 per 100 ml of MMA). Optical properties of PMMA/TiO2 nanocomposite thin films were characterized by UV-Visible absorption spectra using a double beam UV-Vis-NIR Spectrophotometer. The thin films surface morphological analysis is carried out by employing SEM. The structure analysis are achieved by X-ray diffraction. UV-Visible absorption spectra shows that the increasing the concentration of titanium oxide added to the polym
... Show MoreSince the beginning of 21st century, the prices of Agricultural crops have increased. This Increases is accompanied with that increases of crude oil prices and fluctuation of a dollar exchange rate as a dominant currency used in the global trade. The paper aimed to analysis the short run and long run cointegration relationships between prices of some of Agricultural crops imported by Iraq such as wheat and rice crops and both the crude oil prices and the Iraq dinar exchange rate a gained America dollar using ARDL model. The results show the long run equilibrium between they three variable throng the error correction mechanizem. The results also show the significant and economically sound effects of cru
... Show MoreAluminum oxide (ALO) was grafted by acrylic acid monomer (AlO-AM) and then, it was polymerized to produce alumina grafted poly(acrylic acid) (AlO-AP). The prepared AlO-AM and AlO-AP were characterized by Fourier-transform infrared, differential scanning calorimetry , thermogravemetric analyzer and particle size distribution. Adsorption equilibrium isotherms, adsorption kinetics and thermodynamic studies of the batch adsorption process were used to examine the fundamental adsorption properties of phenol (P) and p-chlorophenol (PCP). The experimental equilibrium adsorption data were analyzed by three widely used two-parameters Langmuir, Freundlich and DubininRadushkevich isotherms. The maximum P and PCP adsorption capacities based on t
... Show MoreIn the present research, the chemical washing method has been selected using three chelating agents: citric acid, acetic acid and Ethylene Diamine Tetraacetic Acid (EDTA) to remove 137Cs from two different contaminated soil samples were classified as fine and coarse grained. The factors that affecting removal efficiency such as type of soil, mixing ratio and molarity have been investigated. The results revealed that no correlation relation was found between removal efficiency and the studied factors. The results also showed that conventional chemical washing method was not effective in removing 137Cs and that there are further studies still need to achieve this objective.
In this paper, two types of iron oxide nanomaterial (Fe3O4) and nanocomposite (T-Fe3O4) were created from the bio-waste mass of tangerine peel. These two materials were utilized for adsorption tests to remove cefixime (CFX) from an aqueous solution. Before the adsorption application, both adsorbents have been characterized by various characterizations such as XRD, FTIR, VSM, TEM, and FESEM. The mesoporous nano-crystalline structure of Fe3O4 and T-Fe3O4 nanocomposite with less than 100-nm diameter is confirmed. The adsorption of the obtained adsorbents was evaluated for CFX removal by adjusting several operation parameters to optimize the removal. The optimal conditions for CFX removal were found to be an initial concentration of 40 and 50 m
... Show MoreGas adsorption phenomenon on solid surface has been used as a mean in separation and purification of gas mixture depending on the difference in tendencies of each component in the gas mixture to be adsorbed on the solid surface according to its behaviour. This work concerns to study the possibilities to separate the gas mixture using adsorption-desorption phenomenon on activated carbon. The experimental results exhibit good separation factor at temperature of -40 .
In this work, multilayer nanostructures were prepared from two metal oxide thin films by dc reactive magnetron sputtering technique. These metal oxide were nickel oxide (NiO) and titanium dioxide (TiO2). The prepared nanostructures showed high structural purity as confirmed by the spectroscopic and structural characterization tests, mainly FTIR, XRD and EDX. This feature may be attributed to the fine control of operation parameters of dc reactive magnetron sputtering system as well as the preparation conditions using the same system. The nanostructures prepared in this work can be successfully used for the fabrication of nanodevices for photonics and optoelectronics requiring highly-pure nanomaterials.
In this work, metal oxide nanostructures, mainly copper oxide (CuO), nickel oxide (NiO), titanium dioxide (TiO2), and multilayer structure, were synthesized by the DC reactive magnetron sputtering technique. The effect of deposition time on the spectroscopic characteristics, as well as on the nanoparticle size, was determined. A long deposition time allows more metal atoms sputtered from the target to bond to oxygen atoms and form CuO, NiO, or TiO2 molecules deposited as thin films on glass substrates. The structural characteristics of the final samples showed high structural purity as no other compounds than CuO, NiO, and TiO2 were found in the final samples. Also, the prepared multilayer structures did not show new compounds other than th
... Show More