The aim of this work is to detect the best operating conditions that effect on the removal of Cu2+, Zn2+, and Ni2+ ions from aqueous solution using date pits in the batch adsorption experiments. The results have shown that the Al-zahdi Iraqi date pits demonstrated more efficient at certain values of operating conditions of adsorbent doses of 0.12 g/ml of aqueous solution, adsorption time 72 h, pH solution 5.5 ±0.2, shaking speed 300 rpm, and smallest adsorbent particle size needed for removal of metals. At the same time the particle size of date pits has a little effect on the adsorption at low initial concentration of heavy metals. The adsorption of metals increases with increasing the initial of metal concentration while above the 85 ppm, the removal efficiency was decreased. The phenomenon of adsorption of heavy metals on to Al-Zahdi Iraqi Date pits is exothermic process. The maximum adsorption capacity according to the Langmuir equation was 0.21, 0.149, and 0.132 mmol/g for Cu2+, Zn2+, and Ni2+ respectively. The adsorption equilibrium was well described by the Freundlich model. The results of Freundlich constants indicated that the adsorption capacity and adsorption intensity of Copper is larger than the Zinc and Nickel. The intraparticle diffusion was involved is this process but it is not the controlling step. The results of this study may inspire to find the optimal operating conditions for adsorption and develop that with large-scale production to clean the polluted water with heavy metals.
This paper aims to study the biosorption for removal of lead, cadmium, copper and arsenic ions using algae as a biosorbent. A series of experiments were carried out to obtain the breakthrough data in a fluidized bed reactor. The minimum fluidization velocities of beds were found to be 2.27 and 3.64 mm/s for mish sizes of 0.4-0.6 and 0.6-1 mm diameters, respectively. An ideal plug flow model has been adopted to characterize the fluidized bed reactor. This model has been solved numerically using MATLAB version 6.5. The results showed a well fitting with the experimental data. Different operating conditions were varied: static bed height, superficial velocity and particle diameter. The breakthrough curves were plotted for each metal. Pb2+ s
... Show MoreFor this research, the utilisation of electrocoagulation (EC) toremove theciprofloxacin (CIP) and levofloxacin (LVX) from aqueous solutions was examined. The effective removal efficiencies are 93.47% for CIP and 88.00% for LVX, under optimum conditions. The adsorption isotherm models with suitable mechanisms were applied to determine the elimination of CIP and LVX utilizingtheEC method. Thefindingsshowed the adsorption of CIP and LVX on iron hydroxide flocs followed the Sips isotherm, with correlation coefficient values (R2) of 0.939 and 0.937. Threekinetic models were reviewed to determine the accurate CIP and LVX elimination methods using the EC method. The results showed that itfittedfor the second-order model, which indicated that the c
... Show MoreFor this research, the utilisation of electrocoagulation (EC) toremove theciprofloxacin (CIP) and levofloxacin (LVX) from aqueous solutions was examined. The effective removal efficiencies are 93.47% for CIP and 88.00% for LVX, under optimum conditions. The adsorption isotherm models with suitable mechanisms were applied to determine the elimination of CIP and LVX utilizingtheEC method. Thefindingsshowed the adsorption of CIP and LVX on iron hydroxide flocs followed the Sips isotherm, with correlation coefficient values (R2) of 0.939 and 0.937. Threekinetic models were reviewed to determine the accurate CIP and LVX elimination methods using the EC method. The results showed that itfittedfor the second-order model, which indicated that the c
... Show MoreA study was carried out to analysis of some heavy metals in nine different types of vinegar, belong to Grape, Apple, Synthetic White, Date, Hawthorn, Garlic, Cactus, Pomegranate and Ginger vinegar, which are locally available in Iraqi folk medicine markets. The concentrations of heavy metals in the studied samples including, Cr, Mg, Mn, Zn, Fe, Cd, Ni, Pb and Ag, were determining by using flame atomic absorption spectrophotometry. All data were subjected to statistical analysis by calculating accuracy, precision and correlation coefficient for each concentrations level. The results indicate that Ni was recorded the highest concentration in all studied samples except, Ginger and cactus vinegar, each one receded the highest concentration valu
... Show MoreThe development of a new, cheap, efficient, and ecofriendly adsorbents has become an important demand for the treatment of waste water, so nano silica is considered a good choice. A sample of nanosilica (NS) was prepared from sodium silicate as precursor and the nonionic surfactant Tween 20 as a template. The prepared sample was characterized using various characterization techniques such as FT-IR, AFM, SEM and EDX analysis. The spectrum of FTIR confirms the presence of silica in the sample, while SEM analysis of sample shows nanostructures with pore ranging (2-100nm).The adsorptive properties of this sample were studied by removing Congo red dye (CR) from aqueous solution. Batch experimental methods were carried o
... Show MoreIn this paper, thirty six samples of canned vegetables were collected randomly from
different markets in Baghdad city from October 2013 till March 2014. The study
includes identifying the concentration of some heavy metals (lead, nickel, zinc and iron)
by flameless atomic absorption spectrophotometery. It was found that the higher
concentrations of heavy metals in canned vegetables, was lead 1.179 ppm in olive,
nickel 0.9078 ppm in olive, while zinc 10.143 ppm green peas and iron 90.601ppm in
white asparagus; but the lower concentrations represents with lead 0.0021 ppm in green
asparagus, nickel 0.0202 ppm in mushroom, while zinc 0.528 ppm in white asparagus
and iron 4.061 ppm in green peas. Canned food has been r
An assembled pulsed Nd:YAG laser-robot system for spot welding similar and dissimilar metals is presented in this paper. The study evaluates the performance of this system through investigating the possibility and accuracy of executing laser spot welding of 0.2 mm in thickness stainless steel grade AISI302 to 0.5 mm in thickness low carbon steel grade AISI1008. The influence of laser beam parameters (peak power, pulse energy, pulse duration, repetition rate, and focal plane position on the final gained best results are evaluated. Enhancement of the experimental results was carried by a computational simulation using ANSYS FLUENT 6.3 package code.
Soil is a crucial component of environment. Total soil analysis may give information about possible enrichment of the soil with heavy metals. Heavy metals, potentially contaminate soils, may have been dumped on the ground. chromium, nickel and cadmium,
The linear non-polynomial spline is used here to solve the fractional partial differential equation (FPDE). The fractional derivatives are described in the Caputo sense. The tensor products are given for extending the one-dimensional linear non-polynomial spline to a two-dimensional spline to solve the heat equation. In this paper, the convergence theorem of the method used to the exact solution is proved and the numerical examples show the validity of the method. All computations are implemented by Mathcad15.
Extraction of copper (Cu) from aqueous solution utilizing Liquid Membrane technology (LM) is more effective than precipitation method that forms sludge and must be disposed of in landfills. In this work, we have formulated a liquid surfactant membrane (LSM) that uses kerosene oil as the main diluent of LSM to remove copper ions from the aqueous waste solution through di- (2-ethylhexyl) phosphoric acid - D2EHPA- as a carrier. This technique displays several advantages including one-stage extraction and stripping process, simple operation, low energy requirement, and. In this study, the LSM process was used to transport Cu (II) ions from the feed phase to the stripping phase, which was prepared, using H2SO4. For LSM p
... Show More