The present work aimed to study the efficiency of thermal osmosis process for recovery of water from organic wastewater solution and study the factors affecting the performance of the osmosis cell. The driving force in the thermo osmosis cell is provided by a difference in temperature across the membrane sides between the draw and feed solution. In this research used a cellulose triacetate (CTA), as flat sheet membranes for treatment of organic wastewater under orientation membrane of active layer facing feed solution (FS) and draw solution (DS) is placed against the support layer. The organic materials were phenol, toluene, xylene and BTX (benzene, toluene, and xylene) used as feed solution. The osmotic agent in draw solution was sodium chloride salt. The membranes have high rejection percentage for NaCl and organic materials. In this research, the operating conditions that have been studied are: temperature of draw and feed solution (18 – 45 °C) and the operating time of process was (0 – 3) hours. It was found that water flux in thermal osmosis process increases with increasing temperature of draw and feed solution ( by average ratio 1:2), and decreases with increasing operating time.
Experimental measurements of viscosity and thermal conductivity of single layer of graphene . based DI-water nanofluid are performed as a function of concentrations (0.1-1wt%) and temperatures between (5 to 35ºC). The result reveals that the thermal conductivity of GNPs nanofluids was increased with increasing the nanoparticle weight fraction concentration and temperature, while the maximum enhancement was about 22% for concentration of 1 wt.% at
35ºC. These experimental results were compared with some theoretical models and a good agreement between Nan’s model and the experimental results was observed. The viscosity of the graphene nanofluid displays Newtonian and Non-Newtonian behaviors with respect to nanoparticles concen
This paper presents the electrical behavior of the top contact/ bottom gate of an organic field-effect transistor (OFET) utilizing Pentacene as a semiconductor layer with two distinctive gate dielectric materials Polyvinylpyrrolidone (PVP) and Zirconium oxide (ZrO2) were chosen. The influence of the monolayer and bilayer gates insulator on OFET performance was investigated. MATLAB software was used to simulate and determine the electrical characteristics of a device. The output and transfer characteristics were studied for ZrO2, PVP and ZrO2/PVP as an organic gate insulator layer. Both characteristics show a high drain current at the gate dielectric ZrO2/PVP equal to -0.0031A and -0.0015A for output and transfer characteristics respectively
... Show MoreThis research was aimed to study the osmotic efficiency of the draw solutions and the factors affecting the performance of forward osmosis process : The draw solutions used were magnesium sulfate hydrate (MgSO4.7H2O) pojtassium chloride (KCL), calcium chloride (CaCl2) and ammonium bicarbonate (NH4HCO3). It was found that water flux increases with increasing draw solution concentration, and feed solution flow rate and decreases with increasing draw solution flow rate and feed solution concentration. And also found that the efficiency of the draw solutions is in the following order:
CaCl2> KCI > NH4HCO3> MgSO4.7H
The problem of water scarcity is becoming common in many parts of the world, to overcome part of this problem proper management of water and an efficient irrigation system are needed. Irrigation with a buried vertical ceramic pipe is known as a very effective in the management of irrigation water. The two- dimensional transient flow of water from a buried vertical ceramic pipe through homogenous porous media is simulated numerically using the HYDRUS/2D software. Different values of pipe lengths and hydraulic conductivity were selected. In addition, different values of initial volumetric soil water content were assumed in this simulation as initial conditions. Different value
... Show MoreForward osmosis (FO) process was applied to concentrate the orange juice. FO relies on the driving force generating from osmotic pressure difference that result from concentration difference between the draw solution (DS) and orange juice as feed solution (FS). This driving force makes the water to transport from orange juice across a semi-permeable membrane to the DS without any energy applied. Thermal and pressure-driven dewatering methods are widely used, but they are prohibitively energy intensive and hence, expensive. Effects of various operating conditions on flux have been investigated. Four types of salts were used in the DS, (NaCl, CaCl2, KCl, and MgSO4) as osmotic agent and the experiments were performed at the concentration of
... Show MoreSearch Results at the International Journal of Science and Research (IJSR)
In this study, Al2O3 thin films were prepared by dc reactive sputtering technique using different gas mixtures of argon and oxygen gases (90:10, 70:30, 50:50, 30:70, and 10:90). These films were characterized to introduce their surface morphology and elemental composition as functions of the oxygen content in the gas mixture. The gas mixing ratio plays a crucial role in controlling the nanoscale morphology of the prepared thin films. The [Al]/[O] ratio varies non-linearly with the Ar:O2 mixing ratio. Increasing the oxygen content leads to a progressive decrease in surface roughness, resulting in smoother and more uniform films with finer granular features. These results presented herein are useful to optimize the sputtering process to ac
... Show MoreA New ligand, N-(2-oxo-1,2- Dihydropyrimidin-4- ylcarbamothioyl) Acetamide (DPA) was prepared by reaction of iso thiosyanate derivative with Cytosine. The ligand has been characterized through elemental analysis, H1 NMR, C13NMR, FT-IR, and UV Visible spectra, such ligand’s transition metal complexes have been characterized through conductivity measurement, FT-IR, UV Visible spectra and magnetic susceptibility, all the complexes of this ligand are solid crystal and molar ratio (2:1) (ligand: metal). The form of molecular for these complexes octa hedral. The general formula [M(DPA)2Cl2], where M+2 = (Mn, Co, Ni, Cu, Zn, Cd, Hg).
The aim of this work is to study reverse osmosis characteristics for copper sulfate hexahydrate (CuSO4.6H2O), nickel sulfate hexahydrate (NiSO4.6H2O) and zinc sulfate hexahydrate (ZnSO4.6H2O) removal from aqueous solution which discharge from some Iraqi factories such as Alnasser Company for mechanical industries. The mode of operation of reverse osmosis was permeate is removed and the concentrate of metals solution is recycled back to the feed vessel. Spiral-wound membrane is thin film composite membrane (TFC) was used to conduct this study on reverse osmosis. The variables studied are metals concentrations (50 – 150 ppm) and time (15 – 90 min). It was found that increasing the time results in an increase in concentration of metal in p
... Show More