Porosity plays an essential role in petroleum engineering. It controls fluid storage in aquifers, connectivity of the pore structure control fluid flow through reservoir formations. To quantify the relationships between porosity, storage, transport and rock properties, however, the pore structure must be measured and quantitatively described. Porosity estimation of digital image utilizing image processing essential for the reservoir rock analysis since the sample 2D porosity briefly described. The regular procedure utilizes the binarization process, which uses the pixel value threshold to convert the color and grayscale images to binary images. The idea is to accommodate the blue regions entirely with pores and transform it to white in resulting binary image. This paper presents the possibilities of using image processing for determining digital 2D rock samples porosity in carbonate reservoir rocks. MATLAB code created which automatically segment and determine the digital rock porosity, based on the OTSU's thresholding algorithm. In this work, twenty-two samples of 2D thin section petrographic image reservoir rocks of one Iraqi oil field are studied. The examples of thin section images are processed and digitized, utilizing MATLAB programming. In the present study, we have focused on determining of micro and macroporosity of the digital image. Also, some pore void characteristics, such as area and perimeter, were calculated. Digital 2D image analysis results are compared to laboratory core investigation results to determine the strength and restrictions of the digital image interpretation techniques. Thin microscopic image porosity determined using OTSU technique showed a moderate match with core porosity.
The aim of this research is to assess the validity of Detailed Micro-Modeling (DMM) as a numerical model for masonry analysis. To achieve this aim, a set of load-displacement curves obtained based on both numerical simulation and experimental results of clay masonry prisms loaded by a vertical load. The finite element method was implemented in DMM for analysis of the experimental clay masonry prism. The finite element software ABAQUS with implicit solver was used to model and analyze the clay masonry prism subjected to a vertical load. The load-displacement relationship of numerical model was found in good agreement with those drawn from experimental results. Evidence shows that load-displacement curvefound from the finite element m
... Show MoreBoth the double-differenced and zero-differenced GNSS positioning strategies have been widely used by the geodesists for different geodetic applications which are demanded for reliable and precise positions. A closer inspection of the requirements of these two GNSS positioning techniques, the zero-differenced positioning, which is known as Precise Point Positioning (PPP), has gained a special importance due to three main reasons. Firstly, the effective applications of PPP for geodetic purposes and precise applications depend entirely on the availability of the precise satellite products which consist of precise satellite orbital elements, precise satellite clock corrections, and Earth orientation parameters. Secondly, th
... Show More إن المقصود باختبارات حسن المطابقة هو التحقق من فرضية العدم القائمة على تطابق مشاهدات أية عينة تحت الدراسة لتوزيع احتمالي معين وترد مثل هكذا حالات في التطبيق العملي بكثرة وفي كافة المجالات وعلى الأخص بحوث علم الوراثة والبحوث الطبية والبحوث الحياتية ,عندما اقترح كلا من Shapiro والعالم Wilk عام 1965 اختبار حسن المطابقة الحدسي مع معالم القياس
(
In this work, analytical study for simulating a Fabry-Perot bistable etalon (F-P cavity) filled with a dispersive optimized nonlinear optical material (Kerr type) such as semiconductors Indium Antimonide (InSb). Because of a trade off between the etalon finesse values and driving terms, an optimization procedures have been done on the InSb etalon/CO laser parameters, using critical switching irradiance (Ic) via simulation systems of optimization procedures of optical cavity. in order to achieve the minimum switching power and faster switching time, the optimization parameters of the finesse values and driving terms on optical bistability and switching dynamics must be studied.
... Show MoreThe present study is concerned with the role of income tax in implementing economic goals in Iraq and treating the problems and pitfalls in the Iraq economy.
The study also aims at investigating the role of income tax in attracting promising favorite effects into economy.
The study was performed on data covering the period (2003 - 2012) with respect to the variables of (income tax, oil profits) as independent variables and (private consuming expenditure, private investmental expenditure, and standard figure of prices) as dependent variables. To analyze these data, a number of statistical descriptive and analytical techniques were used such as (percentage, standard variance, mediums, F test, T test and SPSS). It has been c
... Show More<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol
... Show MoreAnomaly detection is still a difficult task. To address this problem, we propose to strengthen DBSCAN algorithm for the data by converting all data to the graph concept frame (CFG). As is well known that the work DBSCAN method used to compile the data set belong to the same species in a while it will be considered in the external behavior of the cluster as a noise or anomalies. It can detect anomalies by DBSCAN algorithm can detect abnormal points that are far from certain set threshold (extremism). However, the abnormalities are not those cases, abnormal and unusual or far from a specific group, There is a type of data that is do not happen repeatedly, but are considered abnormal for the group of known. The analysis showed DBSCAN using the
... Show MoreThe deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Conv
... Show More