Porosity plays an essential role in petroleum engineering. It controls fluid storage in aquifers, connectivity of the pore structure control fluid flow through reservoir formations. To quantify the relationships between porosity, storage, transport and rock properties, however, the pore structure must be measured and quantitatively described. Porosity estimation of digital image utilizing image processing essential for the reservoir rock analysis since the sample 2D porosity briefly described. The regular procedure utilizes the binarization process, which uses the pixel value threshold to convert the color and grayscale images to binary images. The idea is to accommodate the blue regions entirely with pores and transform it to white in resulting binary image. This paper presents the possibilities of using image processing for determining digital 2D rock samples porosity in carbonate reservoir rocks. MATLAB code created which automatically segment and determine the digital rock porosity, based on the OTSU's thresholding algorithm. In this work, twenty-two samples of 2D thin section petrographic image reservoir rocks of one Iraqi oil field are studied. The examples of thin section images are processed and digitized, utilizing MATLAB programming. In the present study, we have focused on determining of micro and macroporosity of the digital image. Also, some pore void characteristics, such as area and perimeter, were calculated. Digital 2D image analysis results are compared to laboratory core investigation results to determine the strength and restrictions of the digital image interpretation techniques. Thin microscopic image porosity determined using OTSU technique showed a moderate match with core porosity.
Sentiment Analysis is a research field that studies human opinion, sentiment, evaluation, and emotions towards entities such as products, services, organizations, events, topics, and their attributes. It is also a task of natural language processing. However, sentiment analysis research has mainly been carried out for the English language. Although the Arabic language is one of the most used languages on the Internet, only a few studies have focused on Arabic language sentiment analysis.
In this paper, a review of the most important research works in the field of Arabic text sentiment analysis using deep learning algorithms is presented. This review illustrates the main steps used in these studies, which include
... Show MoreCharacteristic evolving is most serious move that deal with image discrimination. It makes the content of images as ideal as possible. Gaussian blur filter used to eliminate noise and add purity to images. Principal component analysis algorithm is a straightforward and active method to evolve feature vector and to minimize the dimensionality of data set, this paper proposed using the Gaussian blur filter to eliminate noise of images and improve the PCA for feature extraction. The traditional PCA result as total average of recall and precision are (93% ,97%) and for the improved PCA average recall and precision are (98% ,100%), this show that the improved PCA is more effective in recall and precision.
This paper is focusing on reducing the time for text processing operations by taking the advantage of enumerating each string using the multi hashing methodology. Text analysis is an important subject for any system that deals with strings (sequences of characters from an alphabet) and text processing (e.g., word-processor, text editor and other text manipulation systems). Many problems have been arisen when dealing with string operations which consist of an unfixed number of characters (e.g., the execution time); this due to the overhead embedded-operations (like, symbols matching and conversion operations). The execution time largely depends on the string characteristics; especially its length (i.e., the number of characters consisting
... Show MoreIn the present work, pattern recognition is carried out by the contrast and relative variance of clouds. The K-mean clustering process is then applied to classify the cloud type; also, texture analysis being adopted to extract the textural features and using them in cloud classification process. The test image used in the classification process is the Meteosat-7 image for the D3 region.The K-mean method is adopted as an unsupervised classification. This method depends on the initial chosen seeds of cluster. Since, the initial seeds are chosen randomly, the user supply a set of means, or cluster centers in the n-dimensional space.The K-mean cluster has been applied on two bands (IR2 band) and (water vapour band).The textural analysis is used
... Show MoreFree Space Optics (FSO) plays a vital role in modern wireless communications due to its advantages over fiber optics and RF techniques where a transmission of huge bandwidth and access to remote places become possible. The specific aim of this research is to analyze the Bit-Error Rate (BER) for FSO communication system when the signal is sent the over medium of turbulence channel, where the fading channel is described by the Gamma-Gamma model. The signal quality is improved by using Optical Space-Time Block- Code (OSTBC) and then the BER will be reduced. Optical 2×2 Alamouti scheme required 14 dB bit energy to noise ratio (Eb/N0) at 10-5 bit error rate (BER) which gives 3.5 dB gain as compared to no diversity scheme. Th
... Show MoreThis study investigates the effects of Al-Doura oil refinery effluent, in Baghdad city, on the water quality of the Tigris River using the Canadian Water Quality Index (CCME WQI) and Rivers Maintaining System (1967). Water samples were collected monthly from Tigris River at three stations, which are Al-Muthanna Bridge (upstream), Al-Doura Refinery (point source), and Al–Zafaraniya city (downstream) from October 2020 to April 2021. Fourteen water quality parameters were studied, namely pH (6.50-8.10), Water Temperature (WT) (5.00-27.00 °C), Electrical Conductivity (EC) (877.00-1192.00 μs/cm), Dissolved Oxygen (DO) (5.03-7.57 mg/L), Biological Oxygen demand (BOD) (0.53-2.23 mg/L), Total Dissolved S
In recent years, social media has been increasing widely and obviously as a media for users expressing their emotions and feelings through thousands of posts and comments related to tourism companies. As a consequence, it became difficult for tourists to read all the comments to determine whether these opinions are positive or negative to assess the success of a tourism company. In this paper, a modest model is proposed to assess e-tourism companies using Iraqi dialect reviews collected from Facebook. The reviews are analyzed using text mining techniques for sentiment classification. The generated sentiment words are classified into positive, negative and neutral comments by utilizing Rough Set Theory, Naïve Bayes and K-Nearest Neighbor
... Show MoreOver the last period, social media achieved a widespread use worldwide where the statistics indicate that more than three billion people are on social media, leading to large quantities of data online. To analyze these large quantities of data, a special classification method known as sentiment analysis, is used. This paper presents a new sentiment analysis system based on machine learning techniques, which aims to create a process to extract the polarity from social media texts. By using machine learning techniques, sentiment analysis achieved a great success around the world. This paper investigates this topic and proposes a sentiment analysis system built on Bayesian Rough Decision Tree (BRDT) algorithm. The experimental results show
... Show More