Porosity plays an essential role in petroleum engineering. It controls fluid storage in aquifers, connectivity of the pore structure control fluid flow through reservoir formations. To quantify the relationships between porosity, storage, transport and rock properties, however, the pore structure must be measured and quantitatively described. Porosity estimation of digital image utilizing image processing essential for the reservoir rock analysis since the sample 2D porosity briefly described. The regular procedure utilizes the binarization process, which uses the pixel value threshold to convert the color and grayscale images to binary images. The idea is to accommodate the blue regions entirely with pores and transform it to white in resulting binary image. This paper presents the possibilities of using image processing for determining digital 2D rock samples porosity in carbonate reservoir rocks. MATLAB code created which automatically segment and determine the digital rock porosity, based on the OTSU's thresholding algorithm. In this work, twenty-two samples of 2D thin section petrographic image reservoir rocks of one Iraqi oil field are studied. The examples of thin section images are processed and digitized, utilizing MATLAB programming. In the present study, we have focused on determining of micro and macroporosity of the digital image. Also, some pore void characteristics, such as area and perimeter, were calculated. Digital 2D image analysis results are compared to laboratory core investigation results to determine the strength and restrictions of the digital image interpretation techniques. Thin microscopic image porosity determined using OTSU technique showed a moderate match with core porosity.
With the increasing rate of unauthorized access and attacks, security of confidential data is of utmost importance. While Cryptography only encrypts the data, but as the communication takes place in presence of third parties, so the encrypted text can be decrypted and can easily be destroyed. Steganography, on the other hand, hides the confidential data in some cover source such that the existence of the data is also hidden which do not arouse suspicion regarding the communication taking place between two parties. This paper presents to provide the transfer of secret data embedded into master file (cover-image) to obtain new image (stego-image), which is practically indistinguishable from the original image, so that other than the indeed us
... Show MoreAG Al-Ghazzi, 2009
New technologies have risen into popularity causing the Liquid membrane techniques to evolve over other separation techniques due to its high selectivity and recovery, increased fluxes, and reduced investment and operating cost. This work focuses on extracting Methylene Blue (MB), a cationic dye using a simple BLM separation technique from its aqueous phase. It combines extraction and stripping in a single unit operation. The feed phase was an aqueous solution of MB, the solvent chosen was soybean oil for the liquid/organic membrane phase, and tri-octyl amine acted as a carrier. The strip phase was a hydrochloric acid solution for this study. A two-phase equilibrium study was done to choose the correct solvent, carrier,
... Show MoreIn this paper the behavior of the quality of the gradient that implemented on an image as a function of noise error is presented. The cross correlation coefficient (ccc) between the derivative of the original image before and after introducing noise error shows dramatic decline compared with the corresponding images before taking derivatives. Mathematical equations have been constructed to control the relation between (ccc) and the noise parameter.
Attention-Deficit Hyperactivity Disorder (ADHD), a neurodevelopmental disorder affecting millions of people globally, is defined by symptoms of hyperactivity, impulsivity, and inattention that can significantly affect an individual's daily life. The diagnostic process for ADHD is complex, requiring a combination of clinical assessments and subjective evaluations. However, recent advances in artificial intelligence (AI) techniques have shown promise in predicting ADHD and providing an early diagnosis. In this study, we will explore the application of two AI techniques, K-Nearest Neighbors (KNN) and Adaptive Boosting (AdaBoost), in predicting ADHD using the Python programming language. The classification accuracies obtained w
... Show MoreIn this research we prepared nanofibers by electrospinning from
poly (Vinyl Alcohol) /TiO2. The spectrum of the solution (Emission)
was studied and found to be at 772 nm, several process parameters
were such as concentration of TiO2 , and the effect of distance from
nozzle tip to the grounded collector (gap distance). The result of the
lower concentration of, the smaller the diameter of nanofiber is.
Increasing the gap distance will affect nanofibers diameter