Porosity plays an essential role in petroleum engineering. It controls fluid storage in aquifers, connectivity of the pore structure control fluid flow through reservoir formations. To quantify the relationships between porosity, storage, transport and rock properties, however, the pore structure must be measured and quantitatively described. Porosity estimation of digital image utilizing image processing essential for the reservoir rock analysis since the sample 2D porosity briefly described. The regular procedure utilizes the binarization process, which uses the pixel value threshold to convert the color and grayscale images to binary images. The idea is to accommodate the blue regions entirely with pores and transform it to white in resulting binary image. This paper presents the possibilities of using image processing for determining digital 2D rock samples porosity in carbonate reservoir rocks. MATLAB code created which automatically segment and determine the digital rock porosity, based on the OTSU's thresholding algorithm. In this work, twenty-two samples of 2D thin section petrographic image reservoir rocks of one Iraqi oil field are studied. The examples of thin section images are processed and digitized, utilizing MATLAB programming. In the present study, we have focused on determining of micro and macroporosity of the digital image. Also, some pore void characteristics, such as area and perimeter, were calculated. Digital 2D image analysis results are compared to laboratory core investigation results to determine the strength and restrictions of the digital image interpretation techniques. Thin microscopic image porosity determined using OTSU technique showed a moderate match with core porosity.
KE Sharquie, AA Noaimi, HA Al-Mudaris, Journal of Drugs in Dermatology: JDD, 2013 - Cited by 22
In this paper, a robust invisible watermarking system for digital video encoded by MPEG-4 is presented. The proposed scheme provides watermark hidden by embedding a secret message (watermark) in the sprite area allocated in reference frame (I-frame). The proposed system consists of two main units: (i) Embedding unit and (ii) Extraction unit. In the embedding unit, the system allocates the sprite blocks using motion compensation information. The allocated sprite area in each I–frame is used as hosting area for embedding watermark data. In the extraction unit, the system extracts the watermark data in order to check authentication and ownership of the video. The watermark data embedding method is Blocks average modulation applied on RGB dom
... Show MoreThis study aims to identify changes in vegetation cover and its impact on the climate of Mosul City. The analytical method of the study relies on changes in Land Use/Land Cover (LULC), Normalized Difference Vegetation Index (NDVI), and Land Surface Temperature (LST); GIS technology was used to measure these statistics. Landsat (5,8) imagery was used to detect the change in vegetation cover change and land surface temperature during the study period from 2010 to 2022, where the unsupervised classification technique was used to determine LU variations. The results revealed significant changes among the LU classes during the study period, primarily due to human activities. The most prominent change in LU was the urban expansion of agricultural
... Show MoreIn this work, results from an optical technique (laser speckle technique) for measuring surface roughness was done by using statistical properties of speckle pattern from the point of view of computer image texture analysis. Four calibration relationships were used to cover wide range of measurement with the same laser speckle technique. The first one is based on intensity contrast of the speckle, the second is based on analysis of speckle binary image, the third is on size of speckle pattern spot, and the latest one is based on characterization of the energy feature of the gray level co-occurrence matrices for the speckle pattern. By these calibration relationships surface roughness of an object surface can be evaluated within the
... Show MoreOne of the troublesome duties in chemical industrial units is determining the instantaneous drop size distribution, which is created between two immiscible liquids within such units. In this work a complete system for measuring instantaneous droplet size is constructed. It consists of laser detection system (1mW He-Ne laser), drop generation system (turbine mixer unit), and microphotography system. Two immiscible liquids, water and kerosene were mixed together with different low volume fractions (0.0025, 0.02) of kerosene (as a dispersed phase) in water (as a continuous phase). The experiments were carried out at different rotational speed (1180- 2090 r.p.m) of the turbine mixer. The Sauter mean diameter of the drops was determined by la
... Show MoreThis work deals with the effect of adding aluminum nanoparticles on the mechanical properties, micro-hardness and porosity of memory-shape alloys (Cu-Al-Ni). These alloys have wide applications in various industrial fields such as (high damping compounds and self-lubricating applications). The samples are manufactured using the powder metallurgy method, which involved pressing in only one direction and sintered in a furnace surrounded by an inert gas. Four percentages (0%, 5%, 10%, and 15%) of aluminum nanoparticles were fabricated, which depended on the weight of aluminum powder (13%) in the sample under study. To find out which phase is responsible for the reliability of the formation of this type of alloy and its porosity, X-ray diffr
... Show MoreUndoped and Iodine (I)–doped chrome oxide (Cr2O3)thin films have been prepared by chemical spray pyrolysis technique at substrate temperatures(773K) on glass substrate. Absorbance and transmittance spectra have been recorded as a function of wavelength in the range (340-800 nm) in order to study the optical properties such as reflectance, Energy gap of allowed direct transition, extinction coefficient refractive index, and dielectric constant in real and imagery parts all as a function of wavelength. It was found that all the investigated parameters affect by the doping ratios.
Spray pyrolysis technique (SPT) is employed to synthesize cadmium oxide nanostructure with 3% and 5% Cobalt concentrations. Films are deposited on a glass substrate at 350 ᵒC with 150 nm thickness. The XRD analysis revealed a polycrystalline nature with cubic structure and (111) preferred orientation. Structural parameters represent lattice spacing, crystallite size, lattice parameter and dislocation density. Homogeneous surfaces and regular distribution of atoms were showed by atomic force microscope (AFM) with 1.03 nm average roughness and 1.22 nm root mean square roughness. Optical properties illustrated a high transmittance more than 85% in the range of visible spectrum and decreased with Co concentration increasing. The absorption
... Show MoreIn this study, the results of the uranium concentrations and specific activity in 10 rice samples are described using a solid-state track detector (CR-39). Samples were collected from various local Iraqi markets with different origins (Iraq, India, America, and Thailand). Our findings found that the results of uranium concentration in all studied samples are ranging from (0.55 ± 0.28 to 1.74 ± 0.31) ppm with a weighted average of (1.24 ± 0.99) ppm. Also, results demonstrate that the specific activity values of the studied samples swing between values of (6.88 ± 3.52 and 21.49 ± 3.85) Bq/Kg. The obtained results of the studied rice samples are indicated that it is less than the acceptable limit of those studies established by ma
... Show More