In the present study, advanced oxidation treatment, the TiO2 /UV/H2O2 process was applied to decolorisation of the reactive yellow dyes in aqueous solution. The UV radiation was carried out with a 6 W low-pressure mercury lamp. The rate of color removal was studied by measuring the absorbency at a characteristic wavelength. The effects of H2O2 dosage, dye initial concentration and pH on decolorisation kinetics in the batch photoreactor were investigated. The highest decolorisation rates were observed (98.8) at pH range between 3 and 7. The optimal levels of H2O2 needed for the process were examined. It appears that high levels of H2O2 could reduce decolorisation by scavenging the *OH. The color degradation rate decreases as the dye concentration increases. The rate coefficient (k=0.0319 min-1) of degradation, follows the pseudo-first-order kinetics.
A solid Phase Extraction (SPE) followed by HPLC-UV method is described for the simultaneous quantitative determination of nine priority pollutant phenols : Phenol, 2- and 4-Nitrophenol, 2,4-Dimethylphenol, 2-, 2,4-Di-, 2,4,6-Tri-, and Penta- chlorophenol, 4 Chloro-3-methylphenol. The phenols were separated using a C-18 column with UV detector at wave length of 280nm. The Flow of mobile phase was isocratic consisted of 50:50 Acetonitrile: phosphate buffer pH=7.1, column temperature 45 C°, Flow Rate 0.7 ml/min. Calibration curves were linear (R2 = 0.9961-0.9995). The RSDs (1.301-5.805)%, LOD(39.1- 412.4) µg/L, LOQ(118.5-1250.8) µg/L, the Robustness (1.55-4.89), Ruggedness (2.82-4.00), Repeatability (2.1-4.95), Recoveries%
... Show MoreElectrochemical decolorization of direct black textile dye was studied in the presence of sodiumhydroxide (NaCl). Electrochemical cell occupy about 1 liter of working electrolyte supplied with graphiteelectrodes for both anode and cathode was constructed for this purpose. Decolorization percent, treatment time, power consumption, and pH were studied as a function of the applied voltage and salt concentration. Results show that decolorization increase with increasing salt concentration and applied voltage. Best decolorization of 86% can be achieved after 17 min at 7 volt and 5 g/l salt concentration. Further decolorization can be achieved but this will be accompanied with a sharp increase in power consumption. No significant decrease
... Show MoreThe present study aims to evaluate the biosorption of reactive orange dye by using garden grass. Experiments were carried out in a batch reactor to obtain equilibrium and thermodynamic data. Experimental parameters affecting the biosorption process such as pH, shaking time, initial dye concentrations, and temperature were thoroughly examined. The optimum pH for removal was found to be 4. Fourier transform infrared spectroscopy analysis indicated that the electronegative groups on the surface of garden grass were the major groups responsible for the biosorption process. Four sorption isotherm models were employed to analyze the experimental data of which Temkin and Pyzhey model was found to be most suitable one. The maxim
... Show MoreIn the present study, semi – batch experiments were conducted to investigate the efficiency of ozone microbubbles (OMBs) in the treatment of aqueous dye solutions methylene orange under different reaction conditions such as effect of initial solution pH , ozone generation rate and initial MO-concentration. The results showed that the removal of MO by OMBs were very high at the acidic and alkaline media and upon increasing the generation rate of ozone from 0.498 to 0.83 mg/s, the removal efficiency dramatically increased from 75to 100% within 15 min. The rate of oxidation reaction followed a pseudo first- order kinetic model. The results demonstrated that OMBs is efficient in terms of the decline of methylene orange c
... Show MoreNew technologies have risen into popularity causing the Liquid membrane techniques to evolve over other separation techniques due to its high selectivity and recovery, increased fluxes, and reduced investment and operating cost. This work focuses on extracting Methylene Blue (MB), a cationic dye using a simple BLM separation technique from its aqueous phase. It combines extraction and stripping in a single unit operation. The feed phase was an aqueous solution of MB, the solvent chosen was soybean oil for the liquid/organic membrane phase, and tri-octyl amine acted as a carrier. The strip phase was a hydrochloric acid solution for this study. A two-phase equilibrium study was done to choose the correct solvent, carrier,
... Show MoreIn this research, A thin film of Rhodamine B dye and TiO2 Nanoparticles doped in PMMA Polymer has been prepared by a casting method. The sample was spectrum absorption by UV-Vis. The nonlinear optical properties were measured by Z- scan technique using Nd:YAG laser with (1064 nm) wavelength. The nonlinear refractive index (n2) and nonlinear absorption coefficient (β) were estimated for the thin film for different energies of the laser, n2 and β were decreased with increasing intensity of incident laser beam. Also, the type of β was two-photon absorption and n2 negative nonlinear reflective.
The oxidative degradation of Orange G dye by nanosized CeO2 catalyst has been performed in this study. The catalyst was prepared by precipitation method. Various characterization techniques were carried out to study the physical and chemical properties of the synthesized catalyst. The XRD result confirms well the formation of CeO2 cubic phase. The FTIR result showed the effect of calcination temperature for CeO2 was clearly observed due to reduction in band intensity compared to uncalcined Ce nitrate sample. Meanwhile, the diffused reflection spectra recorded reflection spectra at 414 nm with an energy gap of 3.2 ev. The decolorization of Orange G dye by oxidation process were carried out unde
... Show MoreThis study used a continuous photo-Fenton-like method to remediate textile effluent containing azo dyes especially direct blue 15 dye (DB15). A Eucalyptus leaf extract was used to create iron/copper nanoparticles supported on bentonite for use as catalysts (E@B-Fe/Cu-NPs). Two fixed-bed configurations were studied and compared. The first one involved mixing granular bentonite with E@B-Fe/Cu-NPs (GB- E@B-Fe/Cu-NPs), and the other examined the mixing of E@B-Fe/Cu-NPs with glass beads (glass beads-E@B-Fe/Cu-NPs) and filled to the fixed-bed column. Scanning electron microscopy (SEM), zeta potential, and atomic forces spectroscopy (AFM) techniques were used to characterize the obtained particles (NPs). The effect of flow rate and DB15 concent
... Show MoreSolid‐waste management, particularly of aluminum (Al), is a challenge that is being confronted around the world. Therefore, it is valuable to explore methods that can minimize the exploitation of natural assets, such as recycling. In this study, using hazardous Al waste as the main electrodes in the electrocoagulation (EC) process for dye removal from wastewater was discussed. The EC process is considered to be one of the most efficient, promising, and cost‐effective ways of handling various toxic effluents. The effect of current density (10, 20, and 30 mA/cm2), electrolyte concentration (1 and 2 g/L), and initial concentration of Brilliant Blue dye (15 and 30 mg/L) on