Preferred Language
Articles
/
ijcpe-800
Modifying an Equation to Predict the Asphaltene Deposition in the Buzurgan Oil Field
...Show More Authors

Buzurgan oil field suffers from the phenomenon of asphaltene precipitation. The serious negatives of this phenomenon are the decrease in production caused by clogging of the pores and decrease in permeability and wettability of the reservoir rocks, in addition to the blockages that occur in the pipeline transporting crude oil. The presence of laboratories in the Iraqi oil companies helped to conduct the necessary experiments, such as gas chromatography (GC) test to identify the components of crude oil and the percentages of each component, These laboratory results consider the main elements in deriving a new equation called modified colloidal instability index (MCII) equation based on a well-known global equation called colloidal instability index (CII) equation.

   The modified (MCII) equation is considered an equation compared to the original (CII) equation because both equations mainly depend on the components of the crude oil, but the difference between them lies in the fact that the original equation depends on the crude oil components at the surface conditions, while the new equation relies on the analysis of crude oil to its basic components at reservoir conditions by using (GC) analysis device.

   The components of the crude oil in the reservoir conditions according to the number of carbon atoms of each component compared with the elements of the original equation, which are (saturates, aromatics, resins, and asphaltene).

   The new MCII equation helps in predicting the possibility of asphaltene precipitation which can be used and generalized to other Iraqi oilfields as it has proven its worth and acceptability in this study.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Feb 28 2019
Journal Name
Journal Of Engineering
Numerical Simulation of Unsaturated Soil Water from a Trickle Irrigation System for Sandy Loam Soils
...Show More Authors

Trickle irrigation is a system for supplying filtered water and fertilizer directly into the soil and water and it is allowed to dissipate under low pressure in an exact predetermined pattern. An equation to estimate the wetted area of unsaturated soil with water uptake by roots is simulated numerically using the HYDRUS-2D/3D software. In this paper, two soil types, which were different in saturated hydraulic conductivity were used with two types of crops tomato and corn, different values of emitter discharge and initial volumetric soil moisture content were assumed. It was assumed that the water uptake by roots was presented as a continuous sink function and it was introduced into Richard's equation in the unsaturated z

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Sep 25 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Approximate Solution for Fuzzy Differential Algebraic Equations of Fractional Order Using Adomian Decomposition Method
...Show More Authors

      In this paper we shall prepare an  sacrificial solution for fuzzy differential algebraic equations of fractional order (FFDAEs) based on the Adomian decomposition method (ADM) which is proposed to solve (FFDAEs) . The blurriness will appear in the boundary conditions, to be fuzzy numbers. The solution of the proposed pattern of  equations is studied in the form of a convergent series with readily computable components. Several examples are resolved as  clarifications, the numerical outcomes are obvious that the followed approach is simple to perform and precise when utilized to (FFDAEs).

 

View Publication Preview PDF
Publication Date
Sun Sep 24 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Approximate Solution for Fuzzy Differential Algebraic Equations of Fractional Order Using Adomian Decomposition Method
...Show More Authors

      In this paper we shall prepare an  sacrificial solution for fuzzy differential algebraic equations of fractional order (FFDAEs) based on the Adomian decomposition method (ADM) which is proposed to solve (FFDAEs) . The blurriness will appear in the boundary conditions, to be fuzzy numbers. The solution of the proposed pattern of  equations is studied in the form of a convergent series with readily computable components. Several examples are resolved as  clarifications, the numerical outcomes are obvious that the followed approach is simple to perform and precise when utilized to (FFDAEs).

View Publication Preview PDF
Publication Date
Thu Jan 31 2019
Journal Name
Journal Of Engineering
Design of New Hybrid Neural Structure for Modeling and Controlling Nonlinear Systems
...Show More Authors

This paper proposes a new structure of the hybrid neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Weight parameters of the hybrid neural structure with its serial-parallel configuration are adapted by using the Back propagation learning algorithm. The ability of the proposed hybrid neural structure for nonlinear system has achieved a fast learning with minimum number

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Apr 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Solution of Population Growth Rate Linear Differential Model via Two Parametric SEE Transformation
...Show More Authors

The integral transformations is a complicated function from a function space into a simple function in transformed space. Where the function being characterized easily and manipulated through integration in transformed function space. The two parametric form of SEE transformation and its basic characteristics have been demonstrated in this study. The transformed function of a few fundamental functions along with its time derivative rule is shown. It has been demonstrated how two parametric SEE transformations can be used to solve linear differential equations. This research provides a solution to population growth rate equation. One can contrast these outcomes with different Laplace type transformations

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Oct 30 2021
Journal Name
Iraqi Journal Of Science
Qualitative Analysis of some Types of Neutral Delay Differential Equations
...Show More Authors

     In this paper, we conduct some qualitative analysis that involves the global asymptotic stability (GAS) of the Neutral Differential Equation (NDE) with variable delay, by using  Banach contraction mapping theorem, to give some necessary conditions to achieve the GAS of the zero solution.

View Publication Preview PDF
Scopus Crossref
Publication Date
Tue Nov 30 2021
Journal Name
Iraqi Journal Of Science
Synthesis and Characterization of a Nano (CdO)0.94:(In2O3) 0.06 / Si gas Sensor
...Show More Authors

In this work, a (CdO)0.94:(In2O3)0.06 film was developed on a glass substrate using Q- switching pulse laser beam (Nd:YAG; wavelength 1064 nm). The quantitative elemental analysis of the (CdO)0.94:(In2O3)0.06 thin film was achieved using energy dispersive X- ray diffraction (EDX). The topological and morphological properties of the deposited thin film were investigated using atomic force microscope (AFM) and field emission scan electron microscopy (FESEM). The I-V characteristic and Hall effect of (CdO)0.94 :(In2O3)0.06 thin films were used  to  study the electrical properties. The gas sensor prope

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Journal Of Science
Semigroup Theory for Dual Dynamic Programming
...Show More Authors

In this paper, the nonclassical approach to dynamic programming for the optimal control problem via strongly continuous semigroup has been presented. The dual value function VD ( .,. ) of the problem is defined and characterized. We find that it satisfied the dual dynamic programming principle and dual Hamilton Jacobi –Bellman equation. Also, some properties of VD (. , .) have been studied, such as, various kinds of continuities and boundedness, these properties used to give a sufficient condition for optimality. A suitable verification theorem to find a dual optimal feedback control has been proved. Finally gives an example which illustrates the value of the theorem which deals with the sufficient condition for optimality.

<

... Show More
View Publication Preview PDF
Publication Date
Sat Feb 27 2021
Journal Name
Iraqi Journal Of Science
Asymptotic Stability for Some Types of Nonlinear Fractional Order Differential-Algebraic Control Systems
...Show More Authors

The aim of this paper is to study the asymptotically stable solution of nonlinear single and multi fractional differential-algebraic control systems, involving feedback control inputs, by an effective approach that depends on necessary and sufficient conditions.

View Publication Preview PDF
Scopus Crossref
Publication Date
Mon Jan 27 2020
Journal Name
Iraqi Journal Of Science
Blow-up Rate Estimates and Blow-up Set for a System of Two Heat Equations with Coupled Nonlinear Neumann Boundary Conditions
...Show More Authors

This paper deals with the blow-up properties of positive solutions to a parabolic system of two heat equations, defined on a ball in  associated with coupled Neumann boundary conditions of exponential type. The upper bounds of blow-up rate estimates are derived. Moreover, it is proved that the blow-up in this problem can only occur on the boundary.

View Publication Preview PDF
Scopus (2)
Scopus Crossref