In the oil industry, the processing of vacuum residue has an important economic and environmental benefit. This work aims to produce industrial petroleum coke with light fuel fractions (gasoline, kerosene , gas oil) as the main product and de asphalted oil (DAO) as a side production from treatment secondary product matter of vacuum residue. Vacuum residue was produced from the bottom of vacuum distillation unit of the crude oil. Experimentally, the study investigated the effect of the thermal conversion process on (vacuum residue) as a raw material at temperature reaches to 500 °C, pressure 20 atm. and residence time for about 3 hours. The first step of this treatment is constructing a carbon steel batch reactor its volume about 700 ml, occupied with auxiliary control devices, joined together with an atmospheric distillation unit. The amounts of light fuel fraction products are 2 vol. % for light gasoline, 4 vol. % for heavy gasoline 17 vol. % for kerosene and 24 vol. % for diesel oil. The second step was the treatment the residue matter from first step, in order to separate the petroleum coke matter from asphaltene matter by solvent deasphalting matter (propane) to prepare de asphalted oil (DAO). The amount of de asphalted oil is about 15 vol. %, leaving asphaltene with impurities to precipitate at the bottom of the reactor and these materials consist of the petroleum coke structure. The petroleum coke separate and calcined at approximately (1000 - 1100) °C, to eliminate the reminder of volatile matter from the industrial coke and reach to commercial property.
In this research , pure Cadmium Oxide thin films were prepared by thermal evaporation Under vacuum method , where pure cadmium metal was deposited on glass Substrate in Room temperature (300K) at thickness (400 ± 30) nm with Deposition rate(1.1 ± 0.1) nm/sec And then we oxidize a pure cadmium Film in Temperature ( 350ºC ) for one hour with existence air flow. This research contained study of the influence of doping process by Tin metal (Sn) with two different ratios (1,3) % at substrate temperature (473K ) on th
... Show MoreThis research presents a new study in reactive distillation by adopting a consecutive reaction . The adopted consecutive reaction was the saponification reaction of diethyl adipate with NaOH solution. The saponification reaction occurs in two steps. The distillation process had the role of withdrawing the intermediate product i.e. monoethyl adipate from the reacting mixture before the second conversion to disodium adipate occurred. It was found that monoethyl adipate appeared successfully in the distillate liquid. The percentage conversion from di-ester to monoester was greatly enhanced (reaching 86%) relative to only 15.3% for the case of reaction without distillation .This means 5 times enhancement . The presence of two layers in both the
... Show MoreThis research presents a new study in reactive distillation by adopting a consecutive reaction . The adopted consecutive reaction was the saponification reaction of diethyl adipate with NaOH solution. The saponification reaction occurs in two steps. The distillation process had the role of withdrawing the intermediate product i.e. monoethyl adipate from the reacting mixture before the second conversion to disodium adipate occurred. It was found that monoethyl adipate appeared successfully in the distillate liquid. The percentage conversion from di-ester to monoester was greatly enhanced (reaching 86%) relative to only 15.3% for the case of reaction without distillation .This means 5 times enhancement . The presence of two layers in both
... Show MoreIn the present work, We study the structural and optical properties of (ZnO), which are prepared by thermal evaporation technique, where deposit (Zn) on glass substrates at different thicknesses (150,250,350)nm, deposited on glass substrate at R.T. with rate (5 nm sec-1). And then we make oxidation for (Zn) films at temperature (500) and using the air for one hour, and last annealing samples at temperature (400,500) for one hour. The investigation of (XRD) indicates that the (ZnO) films are polycrystalline type of hexagonal with a preferred orientation along (002) to all samples and analysis reveals that the intensity of this orientation increases with the increase of the thickness and annealing temperature.  
... Show MoreLead selenide PbSe thin films of different thicknesses (300, 500, and 700 nm) were deposited under vacuum using thermal evaporation method on glass substrates. X-ray diffraction measurements showed that increasing of thickness lead to well crystallize the prepared samples, such that the crystallite size increases while the dislocation density decreases with thickness increasing. A.C conductivity, dielectric constants, and loss tangent are studied as function to thickness, frequency (10kHz-10MHz) and temperatures (293K-493K). The conductivity measurements confirm confirmed that hopping is the mechanism responsible for the conduction process. Increasing of thickness decreases the thermal activation energy estimated from Arhinus equation is
... Show MoreReinforcing asphalt concrete with polyester fibers considered as an active remedy to alleviate the harmful impact of fatigue deterioration. This study covers the investigation of utilizing two shapes of fibers size, 6.35 mm by 3.00 mm and 12.70 mm by 3.00 mm with mutual concentrations equal to 0.25 %, 0.50 % and 0.75 % by weight of mixture. Composition of asphalt mixture consists of different optimum (40-50) asphalt cement content, 12.50 mm nominal aggregate maximum size with limestone dust as a filler. Following the traditional asphalt cement and aggregate tests, three essential test were carried out on mixtures, namely: Marshall test (105 cylindrical specimens), indirect tensile strength test (21 cylindrical specimens)
... Show MoreBackground: This in vitro study compares a novel calcium-phosphate etchant paste to conventional 37% phosphoric acid gel for bonding metal and ceramic brackets by evaluating the shear bond strength, remnant adhesive and enamel damage following water storage, acid challenge and fatigue loading. Material and Methods: Metal and ceramic brackets were bonded to 240 extracted human premolars using two enamel conditioning protocols: conventional 37% phosphoric acid (PA) gel (control), and an acidic calcium-phosphate (CaP) paste. The CaP paste was prepared from β-tricalcium phosphate and monocalcium phosphate monohydrate powders mixed with 37% phosphoric acid solution, and the resulting phase was confirmed using FTIR. The bonded premolars were exp
... Show MoreThe extraction of Cupressus sempervirens L. or cypress essential oil was studied in this paper. This cypress oil was extracted by using the hydro-distillation method, using a clevenger apparatus. Cupressus sempervirens L. leaves were collected from Hit city in Al-Anbar province – Iraq. The influences of three important parameters on the process of oil extraction; water which used as a solvent to the solid ratio (5:1 and 14:1 (ml solvent/g plant), temperature (30 to 100 °C) and processing time, were examined to obtain the best processing conditions to achieve the maximum yield of the essential oil. Also, the mathematical model was described to calculate the mass transfer coefficient. Therefore, the best conditions, that were obtained in
... Show MoreIn this study, the effects of different loading doses of cerium in the prepared NaY zeolite from Iraqi kaolin were investigated. Al-Duara refinery atmospheric residue fluid catalytic cracking was selected as palpation reaction for testing the catalytic activity of cerium loading NaY zeolite. The insertion of cerium in NaY zeolites has been synthesized by simple ion exchange methods. Three samples of modified zeolite Y have been obtained by replacing the sodium ions in the original sample with cerium and the weight percent added are 0.35, 0.64, and 1.06 respectively. The effects of cerium loading to zeolite Y in different weight percent on the cracking catalysts were studied by employing a laboratory fluidized
... Show MoreThis study aimed to extraction of essential oil from peppermint leaves by using hydro distillation methods. In the peppermint oil extraction with hydro distillation method is studied the effect of the extraction temperature to the yield of peppermint oil. Besides it also studied the kinetics during the extraction process. Then, 2nd -order mechanism was adopted in the model of hydro distillation for estimation many parameters such as the initial extraction rate, capacity of extraction and the constant rat of extraction with various temperature. The same model was also used to estimate the activation energy. The results showed a spontaneous process, since the Gibbs free energy had a value negative sign.