The purpose of this paper is to examine absorbance for the removal of the Red Congo using wheat husk as a biological pesticide. Several experiments have been conducted with the aim of configuring breakthrough data in a fluidized bed reactor. The minimum fluidized velocities of the bed were found to be 0.031 mm/s for mish sizes of (250) µm diameter with study the mass transfer be calculated KL values. The results showed a well-fitting with the experimental data. Different operating conditions were selected: bed height (2, 5 and 10) cm, flow rate (90, 100and 120) ml/sec and particle diameter (250, 600, 1000) µm. The breakthrough curves were plotted for Congo Red, Values showed that the lower the bed, the lower the number of adsorbents and the potential of the weak bed to condense the density of the solution, which also increases the flow rate and will increase the mass transfer rate.
The present work aims to study the removal of dyes from wastewater by reverse osmosis process. Two dyes were used direct blue 6, and direct yellow. Experiments were performed with feed concentration (75 – 450 ppm), operation temperature (30 – 50 oC) and time (0.2 – 2.0 hr). The membrane used is thin film composite membrane (TFC). It was found that modal permeate concentration decreases with increasing feed concentration and time operating, while permeate concentration increases with increasing feed temperature. Also it was found that product rate increase with increasing temperature, but it decrease with increasing feed concentration and time. The concentration of reject solution showed an increase with increasing feed concentratio
... Show MorePerformance of gas-solid spouted bed benefit from solids uniformity structure (UI).Therefore, the focus of this work is to maximize UI across the bed based on process variables. Hence, UI is to be considered as the objective of the optimization process .Three selected process variables are affecting the objective function. These decision variables are: gas velocity, particle density and particle diameter. Steady-state solids concentration measurements were carried out in a narrow 3-inch cylindrical spouted bed made of Plexiglas that used 60° conical shape base. Radial concentration of particles (glass and steel beads) at various bed heights and different flow patterns were measured using sophisticated optical probes. Stochastic Genetic
... Show MoreGeneral survey for wheat rust diseases in Iraqi fields was done during the seasons of 2010, 2011 and 2012. The survey covered different fields in southern, middle and northern regions. Results of the first season indicated that most of Iraqi cultivars such as Tmmoze2, IPA 99 and Mexipak showed different types of susceptibility to both yellow and leaf rust infection. Disease severity increased when the conditions were favorable for infections with using susceptible cultivars. The severity of leaf rust was less in the north region comparing with the middle and south regions. Most of the introduced cultivars such as Sham6 and Cimmyto showed susceptible reaction to yellow and leaf rust. Yellow rust was in epiphytotic form at the Iraqi-Syrian-Tu
... Show MoreSolid‐waste management, particularly of aluminum (Al), is a challenge that is being confronted around the world. Therefore, it is valuable to explore methods that can minimize the exploitation of natural assets, such as recycling. In this study, using hazardous Al waste as the main electrodes in the electrocoagulation (EC) process for dye removal from wastewater was discussed. The EC process is considered to be one of the most efficient, promising, and cost‐effective ways of handling various toxic effluents. The effect of current density (10, 20, and 30 mA/cm2), electrolyte concentration (1 and 2 g/L), and initial concentration of Brilliant Blue dye (15 and 30 mg/L) on
In this work, solid random gain media were fabricated from laser dye solutions containing nanoparticles as scattering centers. Two different rhodamine dyes (123 and 6G) were used to host the highly-pure titanium dioxide nanoparticles to form the random gain media. The spectroscopic characteristics (mainly fluorescence) of these media were determined and studied. These random gain media showed laser emission in the visible region of electromagnetic spectrum. Fluorescence characteristics can be controlled to few nanometers by adjusting the characteristics of the host and nanoparticles as well as the preparation conditions of the samples. Emission of narrow linewidth (3nm) and high intensity in the visible region (533-537nm) was obtained.
In this work, solid random gain media were fabricated from laser dye solutions containing nanoparticles as scattering centers. Two different rhodamine dyes (123 and 6G) were used to host the highly-pure titanium dioxide nanoparticles to form the random gain media. The spectroscopic characteristics (mainly fluorescence) of these media were determined and studied. These random gain media showed laser emission in the visible region of electromagnetic spectrum. Fluorescence characteristics can be controlled to few nanometers by adjusting the characteristics of the host and nanoparticles as well as the preparation conditions of the samples. Emission of narrow linewidth (3nm) and high intensity in the visible region (533-537nm) was obtained.
The cost-effective carbon cross-linked Y zeolite nanocrystals composite (NYC) was prepared using an eco-friendly substrate prepared from bio-waste and organic adhesive at intermediate conditions. The green synthesis method dependent in this study assures using chemically harmless compounds to ensure homogeneous distribution of zeolite over porous carbon. The greenly prepared cross-linked composite was extensively characterized using Fourier transform infrared, nitrogen adsorption/desorption, Field emission scanning electron microscope, Dispersive analysis by X-ray, Thermogravimetric analysis, and X-ray diffraction. NYC had a surface area of 176.44 m2/g, and a pore volume of 0.0573 cm3/g. NYC had a multi-function nature, sustained at a long-
... Show MoreA pot culture experiment was conducted at the greenhouse of soil and water resources department in College of Agriculture, University of Baghdad in Abo-Ghraib at season 2009-2010 to investigate the effects of using foliar application of some macro and micronutrients in induce antioxidant enzymes in wheat grown under salt stress . Doar85 planted under three levels of salt stress, and three combinations of foliar application were used from nutrients (K+ Ca) at 3000 and 1500 mg.L-1 respectively, and (Fe + Zn + Mn) at 30, 20, and 10 mg.L-1 respectively , and ( K+ Ca) + (Fe+ Zn + Mn). The results showed that increasing levels of sodium chloride in the irrigation of water significantly increased at p<0.05 level SOD and POD activity
... Show MoreFusarium pseudograminearum and Fusarium graminearum commonly cause crown rot (FCR) and head blight (FHB) in wheat, respectively. Disease infection and spread can be reduced by the deployment of resistant cultivars or through management practices that limit inoculum load. Plants deficient in micronutrients, including zinc, tend to be more susceptible to many diseases. On the other hands, and zinc deficiency in cereals is widespread in Australian soils. Zinc deficiency may have particular relevance to crown rot, the most important and damaging Fusarium disease of wheat and barley in Australia. Four wheat genotypes; Batavia, Sunco and two lines from the International Maize and Wheat Improvement Center (CIMMYT) were tested for response
... Show More