Bio-diesel is an attractive fuel fordiesel engines. The feedstock for bio-diesel production is usually vegetable oil, waste cooking oil, or animal fats. This work provides an overview concerning bio-diesel production. Also, this work focuses on the commercial production of biodiesel. The objective is to study the influence of these parameters on the yield of produced. The biodiesel production affecting by many parameters such s alcohol ratio (5%, 10%,15 %, 20%,25%,30%35% vol.), catalyst loading (5,10,15,20,25) g,temperature (45,50,55,60,65,70,75)°C,reaction time (0-6) h, mixing rate (400-1000) rpm. the maximum bio-diesel production yield (95%) was obtained using 20% methanol ratio and 15g biocatalyst at 60°C.
The energy expectation values for Li and Li-like ions ( , and ) have been calculated and examined within the ground state and the excited state in position space. The partitioning technique of Hartree-Fock (H-F) has been used for existing wave functions.
Construction and operation of (2 m) parabolic solar dish for hot water application were illustrated. The heater was designed to supply hot water up to 100 oC using the clean solar thermal energy. The system includes the design and construction of solar tracking unit in order to increase system performance. Experimental test results, which obtained from clear and sunny day, refer to highly energy-conversion efficiency and promising a well-performed water heating system.
n this research, some thermophysical properties of ethylene glycol with water (H2O) and two solvent mixtures dimethylformamide/ water (DMF + H2O) were studied. The densities (ρ) and viscosities (η) of ethylene glycol in water and a mixed solvent dimethylformamide (DMF + H2O) were determined at 298.15 K, t and a range of concentrations from 0.1 to1.0 molar. The ρ and η values were subsequently used to calculate the thermodynamics of mixing including the apparent molar volume (ϕv), partial molar volume (ϕvo) at infinite dilution. The solute-solute interaction is presented by Sv results from the equation ∅_v=ϕ_v^o+S_v √m. The values of viscosity (B) coefficients and Falkenhagen coefficient(A) of the Jone-Dole equation and Gibbs free
... Show MoreCuInSe2 (CIS)thin films have been prepared by use vacuum thermal evaporation technique, of 750 nm thickness, with rate of deposition 1.8±0.1 nm/sec on glass substrate at room temperature and pressure (10-5) mbar. Heat treatment has been carried out in the range (400-600) K for all samples. The optical properties of the CIS thin films are been studied such as (absorption coefficient, refractive index, extinction coefficient, real and imaginary dielectric constant)by determined using Measurement absorption and transmission spectra. Results showed that through the optical constants we can made to control it is wide applications as an optoelectronic devices and photovoltaic applications.
We study one example of hyperbolic problems it's Initial-boundary string problem with two ends. In fact we look for the solution in weak sense in some sobolev spaces. Also we use energy technic with Galerkin's method to study some properties for our problem as existence and uniqueness
Characterized the Middle East has geographic, economic, and geostrategic peculiarities, but it suffers from many problems, such as disagreement over what it means as a concept, or what it represents of a geographic extension. The question is related to the ambiguity surrounding the concept of the Middle East? The purpose of its launch? As it relates to its geostrategic, economic, and geo-cultural importance? And manifestations of this importance? And to what extent he retained his value in the strategies of the major powers? Research hypotheses:
-The multiplicity of concepts for the Middle East region, with international political and Geostrategic interests.- The geostrategic value of the Middle East has made it a focal point for
... Show MoreThis aims tackles the importance of the organizational energy of the hotel organizations that search the success in the business field to penetrate in the whole tourist markets, and to draw the policies and firm rules which must be framed with the administrative strategies that contributed in creativity and achievement the targets besides provide a future vision due to its position among the competitive henceforth achieving the activity. This is what the chapters tackle in the theoretical side. Also many general questions have been arisen to determinate the importance of the research and many other special questions that express the problem of the study. To limit the levels of study alter
... Show MoreSolar collectors, in general, are utilized to convert the solar energy into heat energy, where it is employed to generate electricity. The non-concentrating solar collector with a circular shape was adopted in the present study. Ambient air is heated under a translucent roof where buoyant air is drawn from outside periphery towards the collector center (tower base). The present study is aimed to predict and visualize the thermal-hydrodynamic behavior for airflow under inclined roof of the solar air collector, SAC. Three-dimensional of the SAC model using the re-normalization group, RNG, k−ε turbulence viscus model is simulated. The simulation was carried out by using ANSYS-FLUENT 14.5. The simulation
... Show MoreThe thermal degradation of cable ties of polyamide (PA6,6) neat and UV stabilized was investigated by thermogravimetry (TG) and its derivative (DTG) at several heating rates between 5 and 80 oC min-1 in helium atmosphere. High heating rates signal novel peaks in the DTG curves that indicate melting temperature of PA6,6. The kinetic parameters calculated via isoconversion and nonisothermal data using the Flynn-Wall-Ozawa, Kissinger and CoatsRedfern methods showed comparable activation energy values. Exposure of the ties to outdoor environment causes pre-mature stress cracking and brittle failure due to prevalence of crosslinking reaction occurring in the polymer chains
The thermal and electrical performance of different designs of air based hybrid photovoltaic/thermal collectors is investigated experimentally and theoretically. The circulating air is used to cool PV panels and to collect the absorbed energy to improve their performance. Four different collectors have been designed, manufactured and instrumented namely; double PV panels without cooling (model I), single duct double pass collector (model II), double duct single pass (model III), and single duct single pass (model IV) . Each collector consists of: channel duct, glass cover, axial fan to circulate air and two PV panel in parallel connection. The temperature of the upper and
... Show More