Preferred Language
Articles
/
ijcpe-761
Process Optimization Study of Pb(II) Removal by Bulk Liquid Membrane (BLM)
...Show More Authors

   Box-Wilson experimental design method was employed to optimized lead ions removal efficiency by bulk liquid membrane (BLM) method. The optimization procedure was primarily based on four impartial relevant parameters: pH of feed phase (4-6), pH of stripping phase (9-11), carrier concentration TBP (5-10) %, and initial metal concentration (60-120 ppm). maximum recovery efficiency of lead ions is 83.852% was virtually done following thirty one-of-a-kind experimental runs, as exact through 24-Central Composite Design (CCD). The best values for the aforementioned four parameters, corresponding to the most restoration efficiency were: 5, 10, 7.5% (v/v), and 90 mg/l, respectively. The obtained experimental data had been utilized to strengthen a semi-empirical model, based on a second-degree polynomial, to predict recovery efficiency. The model was tested using ANOVA software (Design expert®) and found acceptable R-Squared were (0.9673). Yield responseurface and contour plots have been created using the developed model, which revealed the presence of high-recovery plateaus whose specs will be useful in controlling pilot or industrial scale future devices to ensure economic feasibility.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Mar 30 2012
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Extraction of Pelletierine from Punica granatum L.by Liquid Membrane Technique and Modelling
...Show More Authors

This work was conducted to study the extraction of pelletierine sulphate from Punica granatum L. roots by liquid membrane techniques. Pelletierine sulphate is used widely in medicine. The general behavior of extraction process indicates that pelletierine conversion increased with increasing the number of stages and the discs rotation speed but high rotation speed was not favored because of the increased risk of droplet formation during the operation. The pH of feed and acceptor solution was also important. The results exhibit that the highest pelletierine conversion was obtained when using two stages, (10 rpm) discs speed of stainless steel discs, (pH=9.5) of feed solution and (pH=2) of acceptor solution in n-decane. Assuming the existen

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 31 2016
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Chromium (VI) Removal from Wastewater by Electrocoagulation Process Using Taguchi Method: Batch Experiments
...Show More Authors

Electrocoagulation is an electrochemical method for treatment of different types of wastewater  whereby sacrificial anodes corrode to release active coagulant (usually aluminium or iron cations) into solution, while simultaneous evolution of hydrogen at the cathode allows for pollutant removal by flotation or settling. The Taguchi method was applied as an experimental design and to determine the best conditions for chromium (VI) removal from wastewater. Various parameters in a batch stirred tank by iron metal electrodes: pH, initial chromium concentration, current density, distance between electrodes and KCl concentration were investigated, and the results have been analyzed using signal-to-noise (S/N) ratio. It was found that the r

... Show More
View Publication Preview PDF
Publication Date
Wed Jun 21 2023
Journal Name
Journal Of Electrochemical Science And Engineering
Phenol removal by electro-Fenton process using a 3D electrode with iron foam as particles and carbon fibre modified with graphene
...Show More Authors

The 3D electro-Fenton technique is, due to its high efficiency, one of the technologies suggested to eliminate organic pollutants in wastewater. The type of particle electrode used in the 3D electro-Fenton process is one of the most crucial variables because of its effect on the formation of reactive species and the source of iron ions. The electrolytic cell in the current study consisted of graphite as an anode, carbon fiber (CF) modified with graphene as a cathode, and iron foam particles as a third electrode. A response surface methodology (RSM) approach was used to optimize the 3D electro-Fenton process. The RSM results revealed that the quadratic model has a high R2 of 99.05 %. At 4 g L-1 iron foam particles, time of 5 h, and

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Baghdad Science Journal
Fabrication of Electrospun Nanofibers Membrane for Emulsified Oil Removal from Oily Wastewater
...Show More Authors

The electrospun nanofibers membranes have gained considerable interest in water filtration applications. In this work, the fabrication and characterization of the electrospun polyacrylonitrile-based nonwoven nanofibers membrane are reported. Then, the membrane's performance and antifouling properties were evaluated in removing emulsified oil using a cross flow filtration system. The membranes were fabricated with different polyacrylonitrile (PAN) concentrations (8, 11, and 14 wt. %) in N, N-Dimethylformamide (DMF) solvent resulted in various average fiber sizes, porosity, contact angle, permeability, oil rejection, and antifouling properties. Analyses of surface morphology of the fabricated membranes before and after oil removal revealed

... Show More
View Publication Preview PDF
Scopus (12)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Wed Jun 29 2022
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Studying and Analyzing Operating Conditions of Hollow Fiber Membrane Preparation Process
...Show More Authors

Polymeric hollow fiber membrane is produced by a physical process called wet or dry/wet phase inversion; a technique includes many steps and depends on different factors (starting from selecting materials, end with post-treatment of hollow fiber membrane locally manufactured). This review highlights the most significant factors that affect and control the characterization and structure of ultrafiltration hollow fiber membranes used in different applications.        Three different types of polymers (polysulfone PSF, polyethersulfone PES or polyvinyl chloride PVC) were considered to study morphology change and structure of hollow fiber membranes in this review. These hollow fiber membranes were manufactured with different proce

... Show More
View Publication
Crossref
Publication Date
Wed Mar 29 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Electrosorption of Hexavalent Chromium Ions by MnO2/Carbon Fiber Composite Electrode: Analysis and Optimization of the Process by Box-Behnken Design
...Show More Authors

A nano manganese dioxide (MnO2) was electrodeposited galvanostatically onto a carbon fiber (CF) surface using the simple method of anodic electrodeposition. The composite electrode was characterized by field emission scanning electron microscopy (FESEM), and X-ray diffraction (XRD). Very few studies investigated the efficiency of this electrode for heavy metals removal, especially chromium. The electrosorption properties of the nano MnO2/CF electrode were examined by removing Cr(VI) ions from aqueous solutions. NaCl concentration, pH, and cell voltage were studied and optimized using the Box-Behnken design (BDD) to investigate their effects and interactions on the electrosorption process. The results showed that the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Dec 01 2017
Journal Name
Al-nahrain Journal For Engineering Sciences (njes)
Investigation of the thermodynamic, kinetic and equilibrium parameters of batch biosorption of Pb (II), Cu (II), and Ni (II) from aqueous phase using low cost biosorbent
...Show More Authors

In this study, low cost biosorbent ̶inactive biomass (IB) granules (dp=0.433mm) taken from drying beds of Al-Rustomia Wastewater Treatment Plant, Baghdad-Iraq were used for investigating the optimum conditions of Pb(II), Cu(II), and Ni(II) biosorption from aqueous solutions. Various physico-chemical parameters such as initial metal ion concentration (50 to 200 mg/l), equilibrium time (0-180 min), pH (2-9), agitation speed (50-200 rpm), particles size (0.433 mm), and adsorbent dosage (0.05-1 g/100 ml) were studied. Six mathematical models describing the biosorption equilibrium and isotherm constants were tested to find the maximum uptake capacities: Langmuir, Freundlich, Redlich–Peterson, Sips, Khan, and Toth models. The best fit to the P

... Show More
Preview PDF
Publication Date
Sun Dec 01 2024
Journal Name
Journal Of Ecological Engineering
Enhancing the Removal of Methyl Orange Dye by Electrocoagulation System with Nickel Foam Electrode – Optimization with Surface Response Methodology
...Show More Authors

Azo dyes like methyl orange (MO) are very toxic components due to their recalcitrant properties which makes their removal from wastewater of textile industries a significant issue. The present study aimed to study their removal by utilizing aluminum and Ni foam (NiF) as anodes besides Fe foam electrodes as cathodes in an electrocoagulation (EC) system. Primary experiments were conducted using two Al anodes, two NiF anodes, or Al-NiF anodes to predict their advantages and drawbacks. It was concluded that the Al-NiF anodes were very effective in removing MO dye without long time of treatment or Ni leaching at in the case of adopting the Al-Al or NiF-NiF anodes, respectively. The structure and surface morphology of the NiF electrode were inves

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Iop Conference Series: Earth And Environmental Science
Implementation of hierarchically porous zeolite-polymer membrane for Chromium ions removal
...Show More Authors
Abstract<p>This work deals with the preparation of a zeolite/polymer flat sheet membrane with hierarchical porosity and ion-exchange properties. The performance of the prepared membrane was examined by the removal of chromium ions from simulated wastewater. A NaY zeolite (crystal size of 745.8 nm) was prepared by conventional hydrothermal treatment and fabricated with polyethersulfone (15% PES) in dimethylformamide (DMF) to obtain an ion-exchange ultrafiltration membrane. The permeate flux was enhanced by increasing the zeolite content within the membrane texture indicating increasing the hydrophilicity of the prepared membranes and constructing a hierarchically porous system. A membrane contain</p> ... Show More
View Publication
Scopus (25)
Crossref (15)
Scopus Crossref
Publication Date
Wed Nov 01 2023
Journal Name
Ecological Engineering &amp; Environmental Technology
Synthesis of Mn-Co-Ni Composite Electrode by Anodic and Cathodic Electrodeposition for Indirect Electro-oxidation of Phenol – Optimization of the Removal by Response Surface Methodology
...Show More Authors

In the present work, Response Surface Methodology (RSM) was utilized to optimize process variables and find the best circumstances for indirect electrochemical oxidation of mimicked wastewater to remove phenol contaminants using prepared ternary composite electrode. The electrodeposition process is used for the synthesis of a ternary composite electrode of Mn, Co, and Ni oxides. The selected concentrations of metal salts of these elements were 0.05, 0.1, and 1.5 M, with constant molar ratio, current density, and electrolysis time of 1:1:1, 25 mA/cm2, and 2 h. Interestedly, the gathered Mn-Co-Ni oxides were deposited at both the anode and cathode. X-ray diffraction (XRD) and scanning electron microscopy (SEM) facilitated the qualitative char

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (3)
Scopus Crossref