Water hyacinth (Eichhornia crassipes) is a free-floating plant, growing plentifully in the tropical water bodies. It is being speculated that the large biomass can be used in wastewater treatment, heavy steel and dye remediation, as a substrate for bioethanol and biogas production, electrical energy generation, industrial uses, human food and antioxidants, medicines, feed, agriculture, and sustainable improvement. In this work, the adsorption of Congo Red (CR) from aqueous solution onto EC biomass was investigated through a series of batch experiments. The effects of operating parameters such as pH (3-9), dosage (0.1-0.9 g. /100 ml), agitated velocity (100-300), size particle (88-353μm), temperature (10-50˚C), initial dye concentration (50-500) mg/l, and sorption–desorption were investigated to assess the efficiency of EC-elimination from aqueous solution. Different pre-treatments, alkali, and acid were achieved to increase the adsorption uptake. The optimum conditions for maximum removal of CR from an aqueous solution of 50 mg/L were as follows: pH (6), particle size (88 μm), stirring speed (200 rpm), and dose (0.3 g). The experimental isotherms data were analyzed using Langmuir, Freundlich, and Temkin isotherm equations and the results indicated that the Langmuir isotherm showed a better fit for CR adsorption with a higher adsorption uptake of 92.263mg/g, and the kinetic data were fitted well with pseudo-second-order kinetic model. Thermodynamic parameters were calculated from Van’t Hoff plot, confirming that the adsorption process was spontaneous and endothermic. Data show that the adsorption-desorption process lasts for four cycles before losing its efficiency and the recovery efficiency increased up to 76.63%.
Water pollution as a result of contamination with dye-contaminating effluents is a severe issue for water reservoirs, which instigated the study of biodegradation of Reactive Red 195 and Reactive Blue dyes by E. coli and Bacillus sp. The effects of occupation time, solution pH, initial dyes concentrations, biomass loading, and temperature were investigated via batch-system experiments by using the Design of Experiment (DOE) for 2 levels and 5 factors response surface methodology (RSM). The operational conditions used for these factors were optimized using quadratic techniques by reducing the number of experiments. The results revealed that the two types of bacteria had a powerful effect on biodegradable dyes. The regression analysis reveale
... Show MoreIn this study, manganese dioxide (MnO₂) nanoparticles (NPs) were synthesized via the hydrothermal method and utilized for the adsorption of Janus green dye (JG) from aqueous solutions. The effects of MnO₂ NPs on kinetics and diffusion were also analyzed. The synthesized NPs were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDX), and Fourier-transform infrared spectroscopy (FT-IR), with XRD confirming the nanoparticle size of 6.23 nm. The adsorption kinetics were investigated using three models: pseudo-first-order (PFO), pseudo-second-order (PSO), and the intraparticle diffusion model. The PSO model provided the best fit (R² = 0.999), indicating that the adsorpti
... Show MoreThe lead has adverse effects in contamination the aquatic environment, for this reason, a laboratory simulation was conducted using kaolinite collected from the Ga’ara Formation at western Iraq to be considered as a natural sorbent material that can be addressed Pb2+ from the aqueous environments. The Energy-Dispersive X-ray Spectroscopy and atomic absorption spectroscopy clarifying very fine grains and pure phase with a very little quantity of quartz and has a number of active sites for adsorption. The sorption of kaolinite for the Pb2+ has been carefully tested by several designed laboratory experiments. Five lead solutions of different concentrations (25, 50, 75, 100 and 125 ppm) were tested under different values of pH (1.3-9)
... Show MoreCorrosion behavior of aluminum alloy 7025 was investigated in hydrochloric acid (pH=1) containing 0.6 mol.dm-3 NaCl in the existence and absence of diverse concentrations of sulphamethoxazole as environmentally friendly corrosion inhibitor over the temperature range (298-313)K. Electrochemical polarization method using potentiostatic technique was employed. The inhibition efficiency has been raised with increased sulphamethoxazole concentration but lessened at temperature increases. The highest efficiency value was 96.5 at 298 K and 2 x10-4 mol.dm-3 concentration of sulphamethoxazole. The sulphamethoxazole adsorption was agreed with Langmuir adsorption isotherm. Some thermodynamic parameter (△Gads) and activation energy (Ea) were determin
... Show MoreThe present work aims to study the possibility of utilization a forward osmosis desalination process as an alternative method to extract water from brine solution rejected from reverse osmosis process.
Experiments conducted in a laboratory–scale forward osmosis (FO) unit in cross flow flat sheet membrane cell yielded water flux ranging from (0.0315 to 0.56 L/m2 .min) when using CTA membrane,and ranging from (0.419 to 2.785 L/m2 .min) for PA membrane under 0.4 bar. Two possible membrane orientations were tested. Sodium chloride with high concentrations was used as draw solution solute. The effect of membrane orientation on internal concentration polarization (ICP) was studied. Two regimes of ICP; dilutive and concentrative were desc
The extraction of iron from aqueous chloride media in presence of aluminum was studied at different kinds of extractants(cyclohexanone, tributyl phosphate, diethyl ketone), different values of normality (pH of the feed solution), agitation time, agitation speed, operating temperature, phase ratio (O/A), iron concentration in the feed, and extractant concentration]. The stripping of iron from organic solutions was also studied at different values of normality (pH of the strip solution) and phase ratio (A/O). Atomic absorption spectrophotometer was used to measure the concentration of iron and aluminum in the aqueous phase throughout the experiments.The best values of extraction coefficient and stripping coefficient are obtained under the
... Show MoreFive different bacterial isolates [ Vibrio cholera (Ogawa) , Vibrio cholera (Inaba) , Salmonella typhi , Salmonella paratyphi and ? Salmonella typhimurium ] were obtained from the Central Health Laboratory . Both sensitivity tests (MIC , MBC and wells method ) against these bacteria were performed by using the aqueous of leaves extract of Marjoram plant. The results cleared that the values of MIC for Vibrio cholera serotypes Ogawa and Inaba were 100 mg/ml , while the value of MBC was 200 mg/ml. The value of the Inhibition zone at 100 mg /ml concentration for both Ogawa and Inaba were 13 mm and 9 mm respectively. Our results showed that the three types of Salmonella didn’t show any inhibition zone at 200 mg/ml .
The main objective of this research is to use the methods of calculus ???????? solving integral equations Altbataah When McCann slowdown is a function of time as the integral equation used in this research is a kind of Volterra