Petrophysical characterization is the most important stage in reservoir management. The main purpose of this study is to evaluate reservoir properties and lithological identification of Nahr Umar Formation in Nasiriya oil field. The available well logs are (sonic, density, neutron, gamma-ray, SP, and resistivity logs). The petrophysical parameters such as the volume of clay, porosity, permeability, water saturation, were computed and interpreted using IP4.4 software. The lithology prediction of Nahr Umar formation was carried out by sonic -density cross plot technique. Nahr Umar Formation was divided into five units based on well logs interpretation and petrophysical Analysis: Nu-1 to Nu-5. The formation lithology is mainly composed of sandstone interlaminated with shale according to the interpretation of density, sonic, and gamma-ray logs. Interpretation of formation lithology and petrophysical parameters shows that Nu-1 is characterized by low shale content with high porosity and low water saturation whereas Nu-2 and Nu-4 consist mainly of high laminated shale with low porosity and permeability. Nu-3 is high porosity and water saturation and Nu-5 consists mainly of limestone layer that represents the water zone.
Calciturbidites are similar to siliciclastic turbidites in structure, texture, basin physiography and processes of deposition; nevertheless, their clasts (grains) are carbonate minerals. Turbidity currents transport carbonate grains from carbonate source areas and coastal areas to the deep basins after passing the shelf (peri-platform). These currents are triggered by short-lived catastrophic events, such as tsunamis, earthquakes, marine slides, and typhoons. The Late Cretaceous Zagros Foreland and Hinterland in NE-Iraq (Kurdistan Region) was an active source for the shedding of voluminous sediments to the deep basin of Zagros Foreland Basin. During late Campanian, Shiranish Formation was deposited in the foreland basin; it occurs in the
... Show MoreCharge transfer complex formation method has been applied for the spectrophotometric determination of erythromycin ethylsuccinate, in bulk sample and dosage form. The method was accurate, simple, rapid, inexpensive and sensitive depending on the formed charge- transfer complex between cited drug and, 2,3- Dichloro-5,6-dicyano-p- benzoquinone (DDQ) as a chromogenic reagent. The formed complex shows absorbance maxima at 587 nm against reagent blank. The calibration graph is linear in the ranges of (10 - 110) μg.mL-1 with detection limit of 0.351μg.mL-1. The results show the absence of interferences from the excipients on the determination of the drug. Therefore the proposed method has been successfully applied for the determination of eryth
... Show MoreThis research deal the primary and secondary sedimentary structures in the By Hassan Formation in the three locations in the northeast of Iraq. Can be recognize many geological structures such as cross bedding, planer bedding, graded bedding, channel structure and mud ball house deposit in the flood plain. The ether side this research study the direction of old current and sedimentary structure that made by the one direction current
The mineralogical study using X-ray diffraction (XRD) supported by scanning electron microscopic (SEM) examination and energy-dispersive spectroscopy (EDS) on the claystone of the Kolosh Formation from northern Iraq was conducted to Shows the provenance history of rocks. Chlorite, montmorillonite, illite, palygorskite, and kaolinite were recorded in different amounts in the study area. The association of montmorillonite and chlorite in the claystone of the Kolosh Formation (Paleocene) refers to the marine environment. Chlorite and montmorillonite are the common minerals in the Kolosh Formation with less common of illite, kaolinite and palygorskite. These clay minerals are of authigenic, detrital and diagenetically origin, which
... Show MoreThe microstructure and wear properties of 392 Al alloy with different Mg contents were studied using centrifugal casting. All melted alloys were heated to 800 ºC and poured into the preheated centrifugal casting mold (200-250 ºC) at different mould rotational speeds (1500, 1900 and 2300 r.p.m). It is clear from the results obtained that wear rate was dependent on the Mg content, applied load and mould rotational speed. Furthermore, wear test showed that the minimum wear rate was found in the inner layer of produced rings at mould rotational speed of 1900 r.p.m and Mg content of 5%.
The speech delivered by political blocs and parties and broadcasted by satellite channels, social and communication media has different ideologies and orientations: moderate speech calling for calm or one raising crises.The latter is considered very challenging due to its local and international reference., this paper aims at uncovering these challenges especially during the political crisis witnessed in Iraq. This paper sheds light on the most important crisis that spread in public opinion, broadcasted by satellite, and raised by politicians who are competing to gain authority leading to a lack of peoples, confidence in them.This matter should not be neglected at all; e |
Achieving an accurate and optimal rate of penetration (ROP) is critical for a cost-effective and safe drilling operation. While different techniques have been used to achieve this goal, each approach has limitations, prompting researchers to seek solutions. This study’s objective is to conduct the strategy of combining the Bourgoyne and Young (BYM) ROP equations with Bagging Tree regression in a southern Iraqi field. Although BYM equations are commonly used and widespread to estimate drilling rates, they need more specific drilling parameters to capture different ROP complexities. The Bagging Tree algorithm, a random forest variant, addresses these limitations by blending domain kno
Titanium-dioxide (TiO2) nanoparticles suspended in water, and ethanol based fluids have been prepared using one step method and characterized by scanning electron microscopy (SEM), and UV–visible spectrophotometer. The TiO2 nanoparticles were added to base fluids with different volume concentrations from 0.1% to1.5% by dispersing the synthesized nanoparticles in deionized water and ethanol solutions. The effective thermal conductivity, viscosity and pH of prepared nanofluids at different temperatures from 15 to 30 oC were carried out and investigated. It was observed that the thermal conductivity, pH, and viscosity of nanofluids increases with the increase in TiO2 nanoparticle volume fraction
... Show More