Corrosion rate tests were carried out on carbon steel under concentration cells conditions of oxygen and sodium chloride. The effect of aeration in one compartment on the corrosion rate of both coupled metals was determined. In addition, the effects of time and temperatures on the corrosion rate of both coupled metals and galvanic currents between them were investigated. Corrosion potentials for the whole range of operating conditions under concentration cell conditions were also studied. The results showed that under aeration condition, the formation of concentration cell caused a considerable corrosion rate of the Carbon steel specimens coupled in different concentrations of O2 and NaCl due to the galvanic effect. Aerating one compartment caused a noticeable increase in the corrosion rate of the coupled specimen in the other compartment due to the galvanic effect. Increasing temperature caused unstable trends in the free and galvanic corrosion potentials. Increasing the temperature led to an increase in the corrosion rate for both metals.
In this work, electron number density calculated using Matlab program code with the writing algorithm of the program. Electron density was calculated using Anisimov model in a vacuum environment. The effect of spatial coordinates on the electron density was investigated in this study. It was found that the Z axis distance direction affects the electron number density (ne). There are many processes such as excitation; ionization and recombination within the plasma that possible affect the density of electrons. The results show that as Z axis distance increases electron number density decreases because of the recombination of electrons and ions at large distances from the target and the loss of thermal energy of the electrons in
... Show MoreThis study aimed to investigate the influence of longitudinal steel embedded tubes located at the center of the column cross-section on the behavior of reinforced concrete (RC) columns. The experimental program consisted of 8 testing pin-ended square sectional columns of 150×150 mm, having a total height of 1400 mm, subjected to eccentric load. The considered variables were the steel square tube sizes of 25, 51 and 68 mm side dimensions and the load eccentricity (50 and 150) mm. RC columns were concealed steel tubes with hollow ratios of 3%, 12% and 20% depending on tube sizes used. The experimental results indicated an improvement in the overall behavior of eccentric columns when steel embedded tubes are used. The maximum gain in
... Show MoreDifferent coating layers of fluorescent agent (FCA) on the solar cells were used. An increase of 35% in the energy conversion efficiency of the solar cell have been obtained. This increase is attributed to the reduction ofthe reflected light, eflection spectra show low values at higher thickness which explained the increase ofthe conversion efficiency with increases of layer thickness.
A batch adsorption system was applied to study the adsorption of methylene blue from aqueous solution by Iraqi bentonite and treated bentonite with different amount of zinc oxide (ZnO). The adsorption capacities of methylene blue onto bentonite were evaluated. The equilibrium between liquid and solid phase was described by Langmuir model better than the Freundlich model. Langmuir and Freundlich constants have been determined. The separation factor or equilibrium parameter, RL which is used to predict if an adsorption system is favourable or unfavourable was calculated for all cases.
In this paper a modified approach have been used to find the approximate solution of ordinary delay differential equations with constant delay using the collocation method based on Bernstien polynomials.
This paper is attempt to study the nonlinear second order delay multi-value problems. We want to say that the properties of such kind of problems are the same as the properties of those with out delay just more technically involved. Our results discuss several known properties, introduce some notations and definitions. We also give an approximate solution to the coined problems using the Galerkin's method.
Background: The most common reason for re-making a maxillofacial prosthesis is the degradation of the mechanical properties of the silicone. Aim of this study: To assess some mechanical properties of VST-50F maxillofacial silicone reinforced with a composite of silicon dioxide nanoparticle and polyamide-6 microparticle before and after artificial aging. Material and Method: Preparing 240 samples tested for tear strength, tensile strength and elongation percentage, hardness, and roughness before and after aging. The Silicon dioxide was added in concentrations of 1% by weight and Polyamide-6 in the concentration of 0.25% and 0.5% by weight to the VST-50F RTV maxillofacial silicone. The one-way ANOVA and post hoc tests were used for inferentia
... Show More