Corrosion rate tests were carried out on carbon steel under concentration cells conditions of oxygen and sodium chloride. The effect of aeration in one compartment on the corrosion rate of both coupled metals was determined. In addition, the effects of time and temperatures on the corrosion rate of both coupled metals and galvanic currents between them were investigated. Corrosion potentials for the whole range of operating conditions under concentration cell conditions were also studied. The results showed that under aeration condition, the formation of concentration cell caused a considerable corrosion rate of the Carbon steel specimens coupled in different concentrations of O2 and NaCl due to the galvanic effect. Aerating one compartment caused a noticeable increase in the corrosion rate of the coupled specimen in the other compartment due to the galvanic effect. Increasing temperature caused unstable trends in the free and galvanic corrosion potentials. Increasing the temperature led to an increase in the corrosion rate for both metals.
Autorías: Muwafaq Obayes Khudhair, Hayder Talib Jasim, Ahmed Thare Hani. Localización: Revista iberoamericana de psicología del ejercicio y el deporte. Nº. 6, 2022. Artículo de Revista en Dialnet.
The dual nature of asphalt binder necessitates improvements to mitigate rutting and fatigue since it performs as an elastic material under the regime of rapid loading or cold temperatures and as a viscous fluid at elevated temperatures. The present investigation assesses the effectiveness of Nano Alumina (NA), Nano Silica (NS), and Nano Titanium Dioxide (NT) at weight percentages of 0, 2, 4, 6, and 8% in asphalt cement to enhance both asphalt binder and mixture performance. Binder evaluations include tests for consistency, thermal susceptibility, aging, and workability, while mixture assessments focus on Marshall properties, moisture susceptibility, resilient modulus, permanent deformation, and fatigue characteristics. NS notably im
... Show MoreThe dual nature of asphalt binder necessitates improvements to mitigate rutting and fatigue since it performs as an elastic material under the regime of rapid loading or cold temperatures and as a viscous fluid at elevated temperatures. The present investigation assesses the effectiveness of Nano Alumina (NA), Nano Silica (NS), and Nano Titanium Dioxide (NT) at weight percentages of 0, 2, 4, 6, and 8% in asphalt cement to enhance both asphalt binder and mixture performance. Binder evaluations include tests for consistency, thermal susceptibility, aging, and workability, while mixture assessments focus on Marshall properties, moisture susceptibility, resilient modulus, permanent deformation, and fatigue characteristics. NS notably im
... Show MoreThe electronic characteristics, including the density of state and bond length, in addition to the spectroscopic properties such as IR spectrum and Raman scattering, as a function of the frequency of Sn10O16, C24O6, and hybrid junction (Sn10O16/C24O6) were studied. The methodology uses DFT for all electron levels with the hybrid function B3-LYP (Becke level, 3-parameters, Lee–Yang-Parr), with 6-311G (p,d) basis set, and Stuttgart/Dresden (SDD) basis set, using Gaussian 09 theoretical calculations. The geometrical structures were calculated by Gaussian view 05 as a supplementary program. The band gap was calculated and compared to the measured valu
... Show MoreThe DC electrical conductivity properties of Ge60Se40-xTex alloy with x = 0, 5, 10, 15 and 20). The samples were formed in the form of discs with the thickness of 0.25–0.30 cm and the diameter of 1.5 cm. Samples were pressed under a pressure of 6 tons per cm2 , using a ton hydraulic press. They were prepared after being pressed using a ton hydraulic press using a hydraulic press. Melting point technology use to preper the samples. Continuous electrical conductivity properties were recorded from room temperature to 475 K. Experimental data indicates that glass containing 15% Te has the highest electrical conductivity allowing maximum current through the sample compared to Lu with other samples. Therefore, it is found that the DC co
... Show MoreChildren who have a health problem need special requirements for their clothes. The purpose of the study is to design functional and aesthetic clothes to meet their needs. The research used the applied descriptive approach. The research sample comprised 120 women whose children suffered from hip dislocation. Designs for injured children presented and submitted to the arbitrators for evaluation regarding the functional and aesthetic aspects. The finding was achieving the design solutions. The most important recommendations are to increase attention to designing clothes to suit all the needs of society.
Acrylic polymer/cement nanocomposites in dark and light colors have been developed for coating floors and swimming pools. This work aims to emphasize the effect of cement filling on the mechanical parameters, thermal stability, and wettability of acrylic polymer. The preparation was carried out using the casting method from acrylic polymer coating solution, which was added to cement nanoparticles (65 nm) with weight concentrations of (0, 1, 2, 4, and 8 wt%) to achieve high-quality specifications and good adhesion. Maximum impact strength and Hardness shore A were observed at cement ratios of 2 wt% and 4 wt%, respectively. Changing the filling ratio has a significant effect on the strain of the nanocomposites. The contact angle was i
... Show MoreArtificial intelligence (AI) offers significant benefits to biomedical research and academic writing. Nevertheless, using AI-powered writing aid tools has prompted worries about excessive dependence on these tools and their possible influence on writing proficiency. The current study aimed to explore the academic staff’s perspectives on the impact of AI on academic writing. This qualitative study incorporated in-person interviews with academic faculty members. The interviews were conducted in a semi-structured manner, using a predetermined interview guide consisting of open-ended questions. The interviews were done in person with the participants from May to November 2023. The data was analyzed using thematic analysis. Ten academics aged
... Show MoreThe technology of subsurface soil water retention (SWRT) uses a polyethylene trough that is fixed under the root zone of the plant. It is a modern technology to increase the values of water use efficiency, plant productivity and saving irrigation water by applying as little irrigation water as possible. This study work aims at improving the crop yield and water use efficiency of a cucumber plant with less applied irrigation water by installing membrane trough below the soil surface. The field experiment was conducted in the Hawr Rajab District of Baghdad Governorate in Winter 2018 for testing various trickle irrigation systems. Two agricultural treatment plots were utilized in a greenhouse for the comparison. Plot T1 has used a subsurface t
... Show More