This paper presents a comparative study of two learning algorithms for the nonlinear PID neural trajectory tracking controller for mobile robot in order to follow a pre-defined path. As simple and fast tuning technique, genetic and particle swarm optimization algorithms are used to tune the nonlinear PID neural controller's parameters to find the best velocities control actions of the right wheel and left wheel for the real mobile robot. Polywog wavelet activation function is used in the structure of the nonlinear PID neural controller. Simulation results (Matlab) and experimental work (LabVIEW) show that the proposed nonlinear PID controller with PSO
learning algorithm is more effective and robust than genetic learning algorithm; thi
Prediction of daily rainfall is important for flood forecasting, reservoir operation, and many other hydrological applications. The artificial intelligence (AI) algorithm is generally used for stochastic forecasting rainfall which is not capable to simulate unseen extreme rainfall events which become common due to climate change. A new model is developed in this study for prediction of daily rainfall for different lead times based on sea level pressure (SLP) which is physically related to rainfall on land and thus able to predict unseen rainfall events. Daily rainfall of east coast of Peninsular Malaysia (PM) was predicted using SLP data over the climate domain. Five advanced AI algorithms such as extreme learning machine (ELM), Bay
... Show MoreThe Khabour reservoir, Ordovician, Lower Paleozoic, Akkas gas field which is considered one of the main sandstone reservoirs in the west of Iraq. Researchers face difficulties in recognizing sandstone reservoirs since they are virtually always tight and heterogeneous. This paper is associated with the geological modeling of a gas-bearing reservoir that containing condensate appears while production when bottom hole pressure declines below the dew point. By defining the lithology and evaluating the petrophysical parameters of this complicated reservoir, a geological model for the reservoir is being built by using CMG BUILDER software (GEM tool) to create a static model. The petrophysical properties of a reservoir were computed using
... Show MoreIn this paper we use the Markov Switching model to investigate the link between the level of Iraqi inflation and its uncertainty; forth period 1980-2010 we measure inflation uncertainty as the variance of unanticipated inflation. The results ensure there are a negative effect of inflation level on inflation uncertainty and all so there are a positive effect of inflation uncertainty on inflation level.  
... Show MoreAbstract
The traffic jams taking place in the cities of the Republic of Iraq in general and the province of Diwaniyah especially, causes return to the large numbers of the modern vehicles that have been imported in the last ten years and the lack of omission for old vehicles in the province, resulting in the accumulation of a large number of vehicles that exceed the capacity of the city's streets, all these reasons combined led to traffic congestion clear at the time of the beginning of work in the morning, So researchers chose local area network of the main roads of the province of Diwaniyah, which is considered the most important in terms of traffic congestion, it was identified fuzzy numbers for
... Show MoreThe objective of the research is to identify the effect of an instructional design according to the active learning modelsالباحثين in the achievement of the students of the fifth grade, the instructional design was constructed according to the active learning models for the design of education. The research experience was applied for a full academic year (the first & the second term of 2017-2018). The sample consisted of 58 students, 28 students for the experimental group and 30 students for the control group. The experimental design was adopted with partial and post-test, the final achievement test consisted of (50) objectives and essays items on two terms, the validity of the test was verified by the adoption of the Kudoric
... Show MoreAbstract
Suffering the human because of pressure normal life of exposure to several types of heart disease as a result of due to different factors. Therefore, and in order to find out the case of a death whether or not, are to be modeled using binary logistic regression model
In this research used, one of the most important models of nonlinear regression models extensive use in the modeling of applications statistical, in terms of heart disease which is the binary logistic regression model. and then estimating the parameters of this model using the statistical estimation methods, another problem will be appears in estimating its parameters, as well as when the numbe
... Show MoreMost of the studies conducted in the past decades focused on the effect of interest rates and exchange rates on domestic investment under the assumption that the independent variables have the same effect on the dependent variable, but there were limited studies that investigated the unequal effects of changes in interest rates and exchange rates, both positive and negative, on domestic investment. This study used a nonlinear autoregressive distributed lag (NARDL) model to assess the unequal effects of the real interest rate and real exchange rate variables on domestic investment in Egypt for the period 1976 - 2020. The results revealed that positive and negative shocks for both exchange rates have unequal effects on
... Show MoreThe objective of the study is to demonstrate the predictive ability is better between the logistic regression model and Linear Discriminant function using the original data first and then the Home vehicles to reduce the dimensions of the variables for data and socio-economic survey of the family to the province of Baghdad in 2012 and included a sample of 615 observation with 13 variable, 12 of them is an explanatory variable and the depended variable is number of workers and the unemployed.
Was conducted to compare the two methods above and it became clear by comparing the logistic regression model best of a Linear Discriminant function written
... Show MoreIn this paper, the speed control of the real DC motor is experimentally investigated using nonlinear PID neural network controller. As a simple and fast tuning algorithm, two optimization techniques are used; trial and error method and particle swarm optimization PSO algorithm in order to tune the nonlinear PID neural controller's parameters and to find best speed response of the DC motor. To save time in the real system, a Matlab simulation package is used to carry out these algorithms to tune and find the best values of the nonlinear PID parameters. Then these parameters are used in the designed real time nonlinear PID controller system based on LabVIEW package. Simulation and experimental results are compared with each other and showe
... Show More