Adsorption is one of the most important technologies for the treatment of polluted water from dyes. Theaim of this study is to use a low-cost adsorbent for this purpose. A novel and economical adsorbent was used to remove methyl violet dye (MV) from aqueous solutions. This adsorbent was prepared from bean peel, which is an agricultural waste. Batch adsorption experiments were conducted to study the ability of the bean peel adsorbent (BPA) to remove the methyl violet (MV) dye. The effects of different variables, such as weight of the adsorbent, pH of the MV solution, initial concentration of MV, contact time and temperature, on the adsorption behaviour were studied. It was found experimentally that the time required to achieve equilibrium was 120 min for all dye concentrations (10-50 mg/l). The BPA was characterised using Fourier transform infrared (FTIR)before and after adsorption of the MV dye. Langmuir, Freundlich and Temkin isotherm models were used to analyse the experimental isotherm data. The Freundlich isotherm gives a better fit than the other isotherm models. The adsorption kinetic data were tested using pseudo-first-order and pseudo–second-order models. Additionally, the intraparticle diffusion model was used to investigate the mechanism of the adsorption process. It was found that boundary layer diffusion (external mass transfer) is the rate-determining step. The thermodynamic parameters, including ΔH, ΔS and ΔG, were investigated at different temperatures (298, 313 and 323 K) and concentrations (5, 10, 20 and 30 mg/l) to understand the nature of the adsorption process. The thermodynamic study indicates that the adsorption of MV dye onto BPA is physical, exothermic and spontaneous in nature.
The reducing of erosion and the solubility of irrigation canals soils which constructed on gypsum soil is important in civil and water resources engineering. The main problem of gypsum soils is the presence of gypsum which represents one of most complex engineering problems, especially when accompanied by the moving of water which represent dynamic load along the canal. There are several solutions to this problem, in this research “Poly urethane” is used to give the gypsum soil sufficient hardness to reduce the solubility and erosion, after compacting the soil in the canal, percentages of Poly urethane was used to making cover to the soil by mixing percent of soil with Poly urethane, and the ratio was as follows: (5 and 10) % an
... Show MoreWater flooding is one of the most important methods used in enhanced production; it was a pioneer method in use, but the development of technology within the oil industry, takes this subject toward another form in the oil production and application in oil fields with all types of oils and oil reservoirs. Now days most of the injection wells directed from the vertical to re-entry of full horizontal wells in order to get full of horizontal wells advantages.
This paper describes the potential benefits for using of re-entry horizontal injection wells as well as combination of re –entry horizontal injection and production wells. Al Qurainat productive sector was selected for study, which is one of the four main productive sectors of Sout
In this work, the spectra for plasma glow produced by pulse
Nd:YAG laser (λ=532 and 1064nm) on Ag:Al alloy with same molar
ratio samples in distilled water were analyzed by studying the atomic
lines compared with aluminum and silver strong standard lines. The
effect of laser energies of the range 300 to 800 mJ on spectral lines,
produced by laser ablation, were investigated using optical
spectroscopy. The electron temperature was found to be increased
from 1.698 to 1.899 eV, while the electron density decreased from
2.247×1015 to 5.08×1014 cm-3 with increasing laser energy from 300
to 800 mJ with wavelength of 1064 nm. The values of electron
temperature using second harmonic frequency are greater than of<
This paper presents a numerical analysis of the piled-raft foundation (PRF) based on the actual behavior of supporting piles. The raft was modeled as a thin plate, while the piles were modeled as springs in different ways. This research also aims to propose an analytical model of piles based on actual behavior at fieldwork. The results proved that the structural behavior of raft member can be improved through utilizing the actual behavior of supporting piles. When the piles were modeled as non-linear stiffness springs, settlements and bending stresses of raft foundation were reduce marginally as compared with those obtained from piles with linear stiffness springs.
Purpose: The present study seeks to examine various history stages in which undergone by the concept of scenarios, and development of this concept to integration with the strategic management practices:
Methodology: The current study relied on a literature review and approach in providing total picture of different stages undergone by this concept.
The main results: the scenarios did not reach maturity in their quest for integration with strategic management, and still need a great effort for the maturation of this thought in the framework of strategic management, and through it can contribute in creating important knowledge evolution.
Originality and value: providing a contemporary model linking the roots of this concept and cu
Klebsiella pneumoniae are Gram-negative which cause many diseases such as urinary tract infections, respiratory tract infections and septicemia. Inulinase is an enzyme used in food manufacture and pharmaceuticals. Inulinase is used in decreasing lipid ratio and, cholesterol in blood and considered as a prebiotic factor inside intestine. Many microorganisms can produce inulinase, such as yeast, fungi and bacteria; among such bacteria: Bacillus spp., Arthrobacter spp., and Pseudomonas spp. but there are no studies about inulinase production by K. pneumoniae have been reported. So the current study aims at investing the ability of producing and purification inulinase by K. pneumoniae. Method: K. pneumoniae were isolated from many hospitals and
... Show More