Of the many functions that are performed by the drilling fluid, the most important is to transport cuttings from the bit up the annulus to the surface. Various drilling fluid have been widely used in the oil industry to improve lifting capacity. In this study, three mud type have been used which they are, oil base mud, X-anthan polymer and a mixture of CMC and bentonite ,by using Carrying Capacity Index calculation (CCI) , the Xanthan gave good values of CCI than other studied drilling fluid. By using Sifferman chart and field data from well in south of Iraq and API equation to find cutting concentration in the annulus, The results showed that the used of thick mud increase the lifting capacity and decrease volumetric drill cuttings in the annulus but the using thin mud lead to decrease lifting capacity and increase volumetric drill cuttings in the annulus .The results show that the mud viscosity and flow rate have important role in hole cleaning. Also, the effect of annulus velocity and flow pattern on cutting transport ratio is studied by using field data. The effect of cutting size and OD of drill pipe is also studied. Cutting size is one of the parameters that influence the hole cleaning; large size cutting makes the hole cleaning more difficult. The reducing of annular size of hole by increasing the OD of drill pipe lead to increasing the annular velocity.
Background: The interest in herbal extracts as antimicrobial agents has increased over the past few years in endodontic therapy. Nasturtium officinale (watercress) is a promising plant with great medicinal values. This study aimed to investigate the antifungal activity of watercress oil in combination with calcium hydroxide against Candida albicans as intracanal medicament. Materials and Methods: Candida albicans was isolated from patients with necrotic root canal or failed root canal treatment. The sensitivity of Candida albicans to different concentrations of watercress oil extract was determined by using the agar well diffusion method in comparison with calcium hydroxide paste. The agar plate method was used to determine the minimum fung
... Show MoreThe calculation of the oil density is more complex due to a wide range of pressuresand temperatures, which are always determined by specific conditions, pressure andtemperature. Therefore, the calculations that depend on oil components are moreaccurate and easier in finding such kind of requirements. The analyses of twenty liveoil samples are utilized. The three parameters Peng Robinson equation of state istuned to get match between measured and calculated oil viscosity. The Lohrenz-Bray-Clark (LBC) viscosity calculation technique is adopted to calculate the viscosity of oilfrom the given composition, pressure and temperature for 20 samples. The tunedequation of state is used to generate oil viscosity values for a range of temperatu
... Show MoreIncreasing hydrocarbon recovery from tight reservoirs is an essential goal of oil industry in the recent years. Building real dynamic simulation models and selecting and designing suitable development strategies for such reservoirs need basically to construct accurate structural static model construction. The uncertainties in building 3-D reservoir models are a real challenge for such micro to nano pore scale structure. Based on data from 24 wells distributed throughout the Sadi tight formation. An application of building a 3-D static model for a tight limestone oil reservoir in Iraq is presented in this study. The most common uncertainties confronted while building the model were illustrated. Such as accurate estimations of cut-off permeab
... Show MoreEnhanced oil recovery is used in many mature oil reservoirs to increase the oil recovery factor. Surfactant flooding has recently gained interest again. To create micro emulsions at the interface between crude oil and water, surfactant flooding is the injection of surfactants (and co-surfactants) into the reservoir, thus achieving very low interfacial tension, which consequently assists mobilize the trapped oil.
In this study a flooding system, which has been manufactured and described at high pressure. The flooding processes included oil, water and surfactants. 15 core holders has been prepared at first stage of the experiment and filled with washed sand grains 80-500 mm and then packing the sand to obtain sand packs
... Show MoreThe objective of this study was to evaluate a natural bio-insecticide manufacturing from Eucalyptus sp. volatile oil. The use of Eucalyptus sp. against the Backswimmer insect Anisops sardea Herrich-Schaeffer, 1849 predatory of larvae of common carp fish, Cyprinus carpio L., in artificial closed ponds in Babylon province represented a new idea in Iraq. The volatile oil of the Eucalyptus sp. was extracted by hot water method using the Clevenger, three concentrations of 250000, 450000 and 650000 ppm with benzyl benzoate as a stabilizer were used, which has a boiling point of 324OC (slow evaporation) at field experiment.The results of field and laboratory experiments of the extracted volatile oil in different concentrations, showed that
... Show MoreThe electrospun nanofibers membranes have gained considerable interest in water filtration applications. In this work, the fabrication and characterization of the electrospun polyacrylonitrile-based nonwoven nanofibers membrane are reported. Then, the membrane's performance and antifouling properties were evaluated in removing emulsified oil using a cross flow filtration system. The membranes were fabricated with different polyacrylonitrile (PAN) concentrations (8, 11, and 14 wt. %) in N, N-Dimethylformamide (DMF) solvent resulted in various average fiber sizes, porosity, contact angle, permeability, oil rejection, and antifouling properties. Analyses of surface morphology of the fabricated membranes before and after oil removal revealed
... Show MoreIn this study, the upgrading of Iraqi heavy crude oil was achieved utilizing the solvent deasphalting approach (SDA) and enhanced solvent deasphalting (e-SDA) by adding Nanosilica (NS). The NS was synthesized from local sand. The XRD result, referred to as the amorphous phase, has a wide peak at 2Θ= (22 - 23º) The inclusion of hydrogen-bonded silanol groups (Si–O–H) and siloxane groups (Si–O–Si) in the FTIR spectra. The SDA process was handled using n-pentane solvent at various solvent to oil ratios (SOR) (4-16/1ml/g), room and reflux temperature, and 0.5 h mixing time. In the e-SDA process, various fractions of the NS (1–7 wt.%) have been utilized with 61 nm particle size and 560.86 m²/g surface area in the presence of 12 m
... Show MoreA set of hydro treating experiments are carried out on vacuum gas oil in a trickle bed reactor to study the hydrodesulfurization and hydrodenitrogenation based on two model compounds, carbazole (non-basic nitrogen compound) and acridine (basic nitrogen compound), which are added at 0–200 ppm to the tested oil, and dibenzotiophene is used as a sulfur model compound at 3,000 ppm over commercial CoMo/ Al2O3 and prepared PtMo/Al2O3. The impregnation method is used to prepare (0.5% Pt) PtMo/Al2O3. The basic sites are found to be very small, and the two catalysts exhibit good metal support interaction. In the absence of nitrogen compounds over the tested catalysts in the trickle bed reactor at temperatures of 523 to 573 K, liquid hourly space v
... Show MoreIn this work, fluid catalytic cracking of vacuum gas oil to produce gasoline over prepared faujasite type Y zeolite was investigated using experimental laboratory plant scale of fluidized bed reactor.
The catalytic activity of prepared faujasite type NaY, NaNH4Y and NaHY zeolites was investigated. The cracking process was carried out in the temperature range 440 to 500 oC, weight hourly space velocity (WHSV) range 10 to 25 h-1 ,and atmospheric pressure . The catalytic activities of the prepared faujasite type NaY , NaNH4Y and NaHY zeolites were determined in terms of vacuum gas oil (VGO) conversion, and gasoline yield . The conversion at 500oC and WHSV10 hr-1 by using faujasite type NaY, NaNH4Y and NaHY zeolite were 50.2%, 64.1% and 6
Increasing hydrocarbon recovery from tight reservoirs is an essential goal of oil industry in the recent years. Building real dynamic simulation models and selecting and designing suitable development strategies for such reservoirs need basically to construct accurate structural static model construction. The uncertainties in building 3-D reservoir models are a real challenge for such micro to nano pore scale structure. Based on data from 24 wells distributed throughout the Sadi tight formation. An application of building a 3-D static model for a tight limestone oil reservoir in Iraq is presented in this study. The most common uncertainties confronted while building the model were illustrated. Such as accurate estimations of cut-off
... Show More