Spatial data analysis is performed in order to remove the skewness, a measure of the asymmetry of the probablitiy distribution. It also improve the normality, a key concept of statistics from the concept of normal distribution “bell shape”, of the properties like improving the normality porosity, permeability and saturation which can be are visualized by using histograms. Three steps of spatial analysis are involved here; exploratory data analysis, variogram analysis and finally distributing the properties by using geostatistical algorithms for the properties. Mishrif Formation (unit MB1) in Nasiriya Oil Field was chosen to analyze and model the data for the first eight wells. The field is an anticline structure with northwest- southeast general trend. Mishrif Formation is the important middle cretaceous carbonate formation in the stratigraphic column of southern Iraq. The result of applying spatial data analysis showed the nature and quantitative summary of data and so it would be easy to remove the skewness and improve the normality of the petrophysical properties for suitable distribution by the algorithms. It also showed that unit MB1 in Mishrif Fromation contains good properties in which high porosity (0.182) and permeability (7.36 md) with low values of water saturation (0.285) that make it suitable for the accumulation of oil.
This paper includes an experimental study of hydrogen mass flow rate and inlet hydrogen pressure effect on the fuel cell performance. Depending on the experimental results, a model of fuel cell based on artificial neural networks is proposed. A back propagation learning rule with the log-sigmoid activation function is adopted to construct neural networks model. Experimental data resulting from 36 fuel cell tests are used as a learning data. The hydrogen mass flow rate, applied load and inlet hydrogen pressure are inputs to fuel cell model, while the current and voltage are outputs. Proposed model could successfully predict the fuel cell performance in good agreement with actual data. This work is extended to developed fuel cell feedback
... Show MoreToday with increase using social media, a lot of researchers have interested in topic extraction from Twitter. Twitter is an unstructured short text and messy that it is critical to find topics from tweets. While topic modeling algorithms such as Latent Semantic Analysis (LSA) and Latent Dirichlet Allocation (LDA) are originally designed to derive topics from large documents such as articles, and books. They are often less efficient when applied to short text content like Twitter. Luckily, Twitter has many features that represent the interaction between users. Tweets have rich user-generated hashtags as keywords. In this paper, we exploit the hashtags feature to improve topics learned
Silver selenide telluride Semiconducting (Ag2Se0.8Te0.2) thin films were by thermal evaporation at RT with thickness350 nm at annealing temperatures (300, 348, 398, and 448) °K for 1 hour on glass substrates .using X-ray diffraction, the structural characteristics were calculated as a function of annealing temperatures with no preferential orientation along any plane. Atomic force microscopy (AFM) and X-ray techniques are used to analyze the Ag2SeTe thin films' physical makeup and properties. AFM techniques were used to analyze the surface morphology of the Ag2SeTe films, and the results showed that the values for average diameter, surface roughness, and grain size mutation increased with annealing temperature (116.36-171.02) nm The transm
... Show MoreSilver selenide telluride Semiconducting (Ag2Se0.8Te0.2) thin films were by thermal evaporation at RT with thickness350 nm at annealing temperatures (300, 348, 398, and 448) °K for 1 hour on glass substrates .using X-ray diffraction, the structural characteristics were calculated as a function of annealing temperatures with no preferential orientation along any plane. Atomic force microscopy (AFM) and X-ray techniques are used to analyze the Ag2SeTe thin films' physical makeup and properties. AFM techniques were used to analyze the surface morphology of the Ag2SeTe films, and the results showed that the values for average diameter, surface roughness, and grain size mutation increased with annealing temperature (116.36-171.02) nm The transm
... Show MoreThe research discusses the problem of salaries in the public sector in terms of the process of analyzing its structure and the possibility of benefiting from the information provided by the analysis process for the strategic planning process, and the General Authority for Groundwater has been adopted and one of the formations of the Ministry of Water Resources, which is centrally funded, to represent the salary structure of its employees (1117) employees be a field of research, as the salary structure in it was analyzed for the period between (2014-2019) using the quantitative approach to analysis and by relying on a number of statistical tools in the analysis process, including mathematical circles, upper limits, lower limits, p
... Show MoreThin films of Zinc Selenide ZnSe have been prepared by using thermal evaporation in vacuum technique (10-5Torr) with thickness (1000, 2700, 4000) A0 and change electrode material and deposited on glass substrates with temperature (373K) and study some electrical properties at this temperature . The graphs shows linear relation between current and voltage and the results have shown increases in the value of current and electrical conductivity with increase thickness and change electrode material from Aluminum to Copper
Density Functional Theory (DFT) with B3LYP hybrid exchange-correlation functional and 3-21G basis set and semi-empirical methods (PM3) were used to calculate the energies (total energy, binding energy (Eb), molecular orbital energy (EHOMO-ELUMO), heat of formation (?Hf)) and vibrational spectra for some Tellurium (IV) compounds containing cycloctadienyl group which can use as ligands with some transition metals or essential metals of periodic table at optimized geometrical structures.