This study aimed to explore whether green synthesized copper nanoparticles (CuNPs) can function as an anti-biofilm agent produced by P. mirabilis. The nanoparticles were synthesized from cells free extract of P. mirabilis. Characterization of biosynthesized copper nanoparticles was carried out to determine the chemical and physical properties of the product using atomic-force microscopy (AFM), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and UV-visible spectroscopy. The hexagonal structure was confirmed by XRD, size range was marked 13-19nm by TEM. FESEM was used to confirm the surface morphology. AFM analysis was used to reveal the roughne
... Show MoreCopper electrodeposition by electrorefining process in acidic sulfate media contains 40 g/l of cupric ions and 160 g/l of sulfuric acid was achieved to study the influence of the operating parameters on cathode purity, surface morphology, deposition rate, current efficiency and power consumption. These operating parameters and there ranges are: current density 200, 300 and 400 A/m2, electrolyte temperature 35, 50 and 65 oC, electrodes spacing 15, 30 and 45 mm and electrolyte residence time 6, 4 and 2 h were utilized. XRF, SEM and EDX analyses were attained to clarify the properties of the produced cathode.
The aim of this paper is to design suitable neural network (ANN) as an alternative accurate tool to evaluate concentration of Copper in contaminated soils. First, sixteen (4x4) soil samples were harvested from a phytoremediated contaminated site located in Baghdad city in Iraq. Second, a series of measurements were performed on the soil samples. Third, design an ANN and its performance was evaluated using a test data set and then applied to estimate the concentration of Copper. The performance of the ANN technique was compared with the traditional laboratory inspecting using the training and test data sets. The results of this study show that the ANN technique trained on experimental measurements can be successfully applied to the rapid est
... Show MoreThe buildup factor of cylindrical samples (shields) for Brass, Copper & lead (Brass, Cu, Pb (was studied, where buildup factor were calculated with thickness between (0-12) m.f.p. for Co60 and Cs137sources with activities (30) & (41) MBq respectively , using scintillation detector NaI(T?) with (3"×3")volume .The results shows increases of buildup factor for low atomic number(Z) samples where the energy of radiation source was constant, also shows increases of buildup factor with decreases the energy of radiation source. An empirical equation was obtained using Matlab7 program this equation have agreements with most obtained data for 96%.
In this work, the copper metal was treated using Nd:YAG laser with energy 1Joul to enhance corrosion resistance and improve surface properties. The copper metal has many applications in industry as well as water, oil and gas pipes. The same conditions, (laser power density, scan speed, distance between paths, medium gas-air) were applied in the laser surface treatment, After laser treatment, the samples microstructures were investigated using optical microscope (OM) to examine micro structural changes due to laser irradiation. Specimen surfaces were investigated using atomic force microscopy (AFM), X-ray diffraction (XRD), macro hardness, and corrosion test before and after laser treatment to
... Show MoreIn this work, a magnetic switch was prepared using two typesof ferrofluid materials, the pure ferrofluid and ferrofluid doped with copper nanoparticles (10 nm). The critical magnetic field (Hc) and the state of magnetic saturation (Hs) were studied using three types of laser sources. The main parameters of the magnetic switch measured using pure ferrofluid and He-Ne Laser source were Hc(0.5 mv, 0.4 G), Hs (8.5 mv, 3 G). For the ferrofluid doped with copper nanoparticles were Hc (1 mv, 4 G), Hs (15 mv, 9.6 G), Using green semiconductor laser for the Pure ferrofluid were Hc (0.5 mv, 0.3 G) Hs (15 mv, 2.9 G). While the ferrofluid doped with copper nanoparticles were Hc (0.5 mv, 1 G), Hs (12 mv, 2.8 G) and by using the violet semiconductor l
... Show MoreIn the present work is the deposition of copper oxide using the pulsed laser deposition technique using Reactive Pulsed Laser as a Deposition technique (RPLD), 1.064μm, 7 nsec Q-switch Nd-YAG laser with 400 mJ/cm2 laser energy’s has been used to ablated high purity cupper target and deposited on the porous silicon substrates recorded and study the effect of rapid thermal annealing on the structural characteristics, morphological, electrical characteristics and properties of the solar cell. Results of AFM likelihood of improved absorption, thereby reducing the reflection compared with crystalline silicon surface. The results showed the characteristics of the solar cell and a clear improvement in the efficiency of the solar cell in the
... Show MoreA simple method was used to create a graphene oxide/chitosan (GO/CS) nanocomposite, which was then used in batch experiments to remove copper ions from industrial wastewater under various conditions of initial concentration, adsorbent weight, pH, and contact time. Maximum removal percentage equal to 99.4 % for initial copper ion concentration of 5x10-2 mol/L at pH 6, time 75 min, temperature 25 °C, and adsorbing dose 0.1 g. The pseudo-second order kinetic model and the Freundlich isotherm adequately fit the experimental results. The process was spontaneous and endothermic, according to thermodynamic studies.
The quaternary alloy of Cu2CdSnS4 (CCSS) is one type of thin film materials that contributes to the field of photovoltaic devices manufacturing, the importance of which has not been commonly enlightened as most of the other materials. For the preparation of CCSS thin films at 350 °C on glass substrates, the chemical spray pyrolysis technique was used. The optical properties of thin films prepared under the influence of the variation of copper solution molarity (0.03, 0.05, 0.07, and 0.09 M) on the quaternary compound were examined using a UV-vis spectrophotometer. The findings of the AFM study showed the atoms on the surface that are acclimatized in the form of nanorods with an increase in the average grain s
... Show MoreCopper is a cheaper alternative to various noble metals with a range of potential applications in the field of nanoscience and nanotechnology. However, copper nanoparticles have major limitations, which include rapid oxidation on exposure to air. Therefore, alternative pathways have been developed to synthesize metal nanoparticles in the presence of polymers and surfactants as stabilizers, and to form coatings on the surface of nanoparticles. These surfactants and polymeric ligands are made from petrochemicals which are non- renewable. As fossil resources are limited, finding renewable and biodegradable alternative is promising.The study aimed at preparing, characterizing and evaluating the antibacterial properties of copper nanoparticle
... Show More