Stick-slip is kind of vibration which associated with drilling operation in around the bottom hole assembly (BHA) due to the small clearance between drill string & the open hole and due to the eccentric rotating of string. This research presents results of specific experimental study that was run by using two types of drilling mud (Fresh water Bentonite & Polymer), with/without Nanoparticle size materials of MgO in various ratios and computes the rheological properties of mud for each concentration [Yield point, plastic viscosity, Av, PH, filter loss (30 min), filter cake, Mud Cake Friction, Friction Factor]. These results then were used to find a clear effects of Nanoparticle drilling mud rheology on stick - slip strength by several perspectives through a special “Torque and Drag” software which simulate the torque amount expected on BHA during drilling a vertical well in different conditions using real drilling string design that usually used in Iraqi oil fields. Thus to mitigate or to prevent stick–slip and cure the sequence events that could happen to both of drilling string and the well, i.e. Bit/BHA wear, pipe sticking, borehole instability and low Rate of penetration. Our study concluded that there are good reduction in the torque from (2031lb-ft) to (1823lb-ft) using polymer mud and torque reduction from (4000lb-ft) to (3450lb-ft) using Fresh Water Bentonite, these results do not include any breaking in the satisfactory range of other mud rheology.
Ceramic coating compose from a ceramic mixture (MgO, Al2O3) and metall (Al-Ni) were produced by Thermal Spray Technique. The mixed ratio of used materials Al:Ni (50%) and 40% of Al2O3 and 10% MgO. This mixture was spray on a stainless steel substrate of type (316 L) by using thermal spray with flame method and at spraying distances (8, 12, 16 and 20) cm, then the prepared films were treated by laser and thermal treatment. After that performing a hardness and adhesion tests were eximined. The present study shows that the best value of the thermal treatment is 1000 ℃ for 30 mint; the optimum spray distance is 12 cm and most suitable laser is 500 mJ where the microscopic and mechanical character
... Show MorePurpose Heavy metals are toxic pollutants released into the environment as a result of different industrial activities. Biosorption of heavy metals from aqueous solutions is a new technology for the treatment of industrial wastewater. The aim of the present research is to highlight the basic biosorption theory to heavy metal removal. Materials and methods Heterogeneous cultures mostly dried anaerobic bacteria, yeast (fungi), and protozoa were used as low-cost material to remove metallic cations Pb(II), Cr(III), and Cd(II) from synthetic wastewater. Competitive biosorption of these metals was studied. Results The main biosorption mechanisms were complexation and physical adsorption onto natural active functional groups. It is observed that
... Show MoreAssessing water quality provides a scientific foundation for the development and management of water resources. The objective of the research is to evaluate the impact treated effluent from North Rustumiyia wastewater treatment plant (WWTP) on the quality of Diyala river. The model of the artificial neural network (ANN) and factor analysis (FA) based on Nemerow pollution index (NPI). To define important water quality parameters for North Al-Rustumiyia for the line(F2), the Nemerow Pollution Index was introduced. The most important parameters of assessment of water variation quality of wastewater were the parameter used in the model: biochemical oxygen demand (BOD), chemical oxygen dem
This study deals with the elimination of methyl orange (MO) from an aqueous solution by utilizing the 3D electroFenton process in a batch reactor with an anode of porous graphite and a cathode of copper foam in the presence of granular activated carbon (GAC) as a third pole, besides, employing response surface methodology (RSM) in combination with Box-Behnk Design (BBD) for studying the effects of operational conditions, such as current density (3–8 mA/cm2), electrolysis time (10–20 min), and the amount of GAC (1–3 g) on the removal efficiency beside to their interaction. The model was veiled since the value of R2 was high (>0.98) and the current density had the greatest influence on the response. The best removal efficiency (MO Re%)
... Show MoreEuropean Chemical Bulletin (ISSN 2063-5346) is a peer-reviewed journal that publishes original research papers, short communications, and review articles in all areas of chemistry. European Chemical Bulletin has eight sections, namely
The largest use of x-ray in medical by dentists, employers or persons that needed by patients with specific conditions, lead to higher exposure of x-ray that may cause many diseases. In the present work radiography films have been used in evaluating the efficiency of using unsaturated polyester polymer reinforced with lead oxide (PbO) as shield material for medical x-ray devices, many parameters studied like concentration and thickness that they are increasing the attenuation of x-ray in them. The results show that the attenuation of X-ray increasing with concentration of reinforced material and with thickness, and the optical density decreases with increasing concentration from 0% to 50%, we chose 30% as suitable concentration to increase
... Show MoreAbstract: Two different shapes of offset optical fiber was studied based on coreless fiber for refractive index (RI)/concentration (con.) measurement, and compare them. These shapes are U and S-shapes, both shapes structures were formed by one segment of coreless fiber (CF) was joined between two single mode (SMF) lead in /lead out with the same displacement (12.268µm) at both sides, the results shows the high sensitive was achieved in a novel S-shape equal 98.768nm/RIU, to our knowledge, no one has ever mentioned or experienced it, it’s the best shape rather than the U-shape which equal 85.628nm/RIU. In this research, it was proved that the offset form has a significant effect on the sensitivity of the sensor. Addi
... Show MoreThe effect of Low-Level Laser (LLL) provided by green semiconductor laser with an emission wavelength of 532 nm on of human blood of people with brain and prostate cancer has been investigated. The effect of LLL on white blood cell (WBC), NEUT, LYMPH and MONO have been considered. Platelet count (PLT) has also been considered in this work. 2 ml of blood sample were irradiating by a green laser of the dose of 4.8 J/cm2. The results suggest a potential effect of LLL on WBC, PLT, NEUT, LYMPH, and MONO of people with brain and prostate cancer Key words: white blood cell , platelet , low-level laser therapy