This study aimed at comparing the performance of vertical, horizontal and hybrid subsurface flow systems in secondary treatment for the effluent wastewater from the primary basins at Al-Rustumia wastewater treatment plant, Baghdad, Iraq. The treatments were monitored for six weeks while the testsduration were from 4 to 12 September 2018 under continuous wastewater feeding for chemical oxygen demand (COD), total suspended solid (TSS),ammonia-nitrogen(NH4-N) and phosphate (PO4-P) in comparison with FAO and USEPA standards for effluent discharge to evaluate the suitability of treated water for irrigation purposes. Among the systems planted with Phragmites Australia, the hybrid subsurface flow system which consisted of vertical unit followed by horizontal one, considerably removed the pollutants more efficiently than the single operated systems. The planted hybrid subsurface flow wetland system was achieved the highest removal with a mean removal rate of COD,TSS, NH4-N, and PO4-Pat 99.3, 83.2,67.4 and 53% respectively and these percentages were decreased in the other systems. The results proved that the planted vertical subsurface flow unit can be removed the COD, TSS, NH4-N and PO4-Pwith values of 93, 71.1, 43.3 and 30.7%, respectively while the achieved removals by horizontal subsurface flow unit of 99, 74.3, 54.5 and 20.3%, respectively. The planted horizontal subsurface flow wetland, however, showed a good efficacy for all parameters in the treatment process except for PO4-P when it is compared with vertical system, however, there is a clear increase in the NO3-N effluent concentration for all treatment units.
Text based-image clustering (TBIC) is an insufficient approach for clustering related web images. It is a challenging task to abstract the visual features of images with the support of textual information in a database. In content-based image clustering (CBIC), image data are clustered on the foundation of specific features like texture, colors, boundaries, shapes. In this paper, an effective CBIC) technique is presented, which uses texture and statistical features of the images. The statistical features or moments of colors (mean, skewness, standard deviation, kurtosis, and variance) are extracted from the images. These features are collected in a one dimension array, and then genetic algorithm (GA) is applied for image clustering.
... Show MoreAn oil spill is a leakage of pipelines, vessels, oil rigs, or tankers that leads to the release of petroleum products into the marine environment or on land that happened naturally or due to human action, which resulted in severe damages and financial loss. Satellite imagery is one of the powerful tools currently utilized for capturing and getting vital information from the Earth's surface. But the complexity and the vast amount of data make it challenging and time-consuming for humans to process. However, with the advancement of deep learning techniques, the processes are now computerized for finding vital information using real-time satellite images. This paper applied three deep-learning algorithms for satellite image classification
... Show MoreA new method based on the Touchard polynomials (TPs) was presented for the numerical solution of the linear Fredholm integro-differential equation (FIDE) of the first order and second kind with condition. The derivative and integration of the (TPs) were simply obtained. The convergence analysis of the presented method was given and the applicability was proved by some numerical examples. The results obtained in this method are compared with other known results.
conventional FCM algorithm does not fully utilize the spatial information in the image. In this research, we use a FCM algorithm that incorporates spatial information into the membership function for clustering. The spatial function is the summation of the membership functions in the neighborhood of each pixel under consideration. The advantages of the method are that it is less
sensitive to noise than other techniques, and it yields regions more homogeneous than those of other methods. This technique is a powerful method for noisy image segmentation.
Researches in the field of evaluation of industrial products emotionally are internationally new and non-existing in the Arabic speaking countries, which is considered the crux of the problem in the current research, in addition to the need of the designers and design students to know how to measure the emotional responses for the industrial product in order to get benefit from them in their designs. The research objective is to get a tool that uses emojis in measuring the emotional responses for the products. The researcher designed an emotional verbal wheel and emojis wheel. The sample of the research consisted of (7) chairs different in design and use, and the respondents were (89) students. The most important results are:
1- Desi
Human Interactive Proofs (HIPs) are automatic inverse Turing tests, which are intended to differentiate between people and malicious computer programs. The mission of making good HIP system is a challenging issue, since the resultant HIP must be secure against attacks and in the same time it must be practical for humans. Text-based HIPs is one of the most popular HIPs types. It exploits the capability of humans to recite text images more than Optical Character Recognition (OCR), but the current text-based HIPs are not well-matched with rapid development of computer vision techniques, since they are either vey simply passed or very hard to resolve, thus this motivate that
... Show More