Due to the broad range uses of chromium for industrial purposes, besides its carcinogenic effect, an efficient, cost effective removal method should be obtained. In this study, cow bones as a cheap raw material were utilized to produce active carbon (CBAC) by physiochemical activation, which was characterized using: SEM to investigate surface morphology and BET to estimate the specific surface area. The best surface area of CBAC was 595.9 m2/gm which was prepared at 600 ᵒC activation temperature and impregnation ratio of 1:1.5. CBAC was used in aqueous chromium ions adsorption. The investigated factors and their ranges are: initial concentration (10-50 mg/L), adsorption time (30-300 min), temperature (20-50 ᵒC) and solution pH (2-11). Isotherm of adsorption and its kinetics were studied. The adsorption process was modeled statistically and was represented by an empirical model. Equilibrium data were fitted to the Langmuir and Freundlich isotherm models and the data best represented by Freundlich isotherm. Pseudo- first order and pseudo- second order kinetic equations were utilized to study adsorption kinetics, where chromium adsorption on CBAC fitted pseudo- second order fitted the data more adequately. The best removal efficiency was found to be 94.32%.
Introduction: Inadequate pain assessment and management is a problem in hospitalized patients that impairs their wellbeing. Intensive care unit nurses’ pain practices are affected by several barriers and enablers. Objectives: The objectives of this study were to determine the level of nurses’ practices and perceived barriers related to pain assessment in critically ill patients. Methodology: A cross-sectional design study was used. Purposive sampling technique was employed, including 100 nurses recruited from 8 intensive care units in Baghdad city, Iraq. The study was conducted from September 1st to October 20th, 2022. The pain assessment and management for critically ill patients survey was used to collect data. Descriptive sta
... Show MoreAn experimental and theoretical works were carried out to model the wire condenser in the domestic refrigerator by calculating the heat transfer coefficient and pressure drop and finding the optimum performance. The two methods were used for calculation, zone method, and an integral method. The work was conducted by using two wire condensers with equal length but different in tube diameters, two refrigerants, R-134a and R-600a, and two different compressors matching the refrigerant type. In the experimental work, the optimum charge was found for the refrigerator according to ASHRAE recommendation. Then, the tests were done at 32˚C ambient temperature in a closed room with dimension (2m*2m*3m). The results showed that th
... Show MoreIn this investigation, the mechanical properties and microstructure of Metal Matrix Composites (MMCs) of Al.6061 alloy reinforced by ceramic materials SiC and Al2O3 with different additive percentages 2.5, 5, 7.5, and 10 wt.% for the particle size of 53 µm are studied. Metal matrix composites were prepared by stir casting using vortex technique and then treated thermally by solution heat treatment at 530 0C for 1 hr. and followed by aging at 175 0C with different periods. Mechanical tests were done for the samples before and after heat treatment, such as impact test, hardness test, and tensile test. Also, the microstructure of the metal matrix composites was examine
... Show MoreOne of the important units in Sharq Dijla Water Treatment Plant (WTP) first and second extensions are the alum solution preparation and dosing unit. The existing operation of this unit accomplished manually starting from unloading the powder alum in the preparation basin and ending by controlling the alum dosage addition through the dosing pumps to the flash mix chambers. Because of the modern trend of monitoring and control the automatic operation of WTPs due to the great benefits that could be gain from optimum equipment operation, reducing the operating costs and human errors. This study deals with how to transform the conventional operation to an automatic monitoring and controlling system depending on a Programmable
... Show MoreIn this work, the calculation of matter density distributions, elastic charge form factors and size radii for halo 11Be, 19C and 11Li nuclei are calculated. Each nuclide under study are divided into two parts; one for core part and the second for halo part. The core part are studied using harmonic-oscillator radial wave functions, while the halo part are studied using the radial wave functions of Woods-Saxon potential. A very good agreement are obtained with experimental data for matter density distributions and available size radii. Besides, the quadrupole moment for 11Li are generated.
BACKGROUND: The humeral shaft fractures have a good rate of union, despite this fact, still there is a significant rate of nonunion after nonoperative treatment and more often after operative treatment. AIM: The aim of the study is to evaluate the autogenous onlay graft with compression plate for treatment of persistent humeral shaft non-union with failed previous surgery both radiological and functional outcome. MATERIALS AND METHODS: A prospective study on twenty patients having persistent aseptic non-union age between 20 and 60 years old, after failed surgical treatment of fractures humeral shaft in Al-Zahra teaching and Al-Kindy teaching hospitals, while infected nonunion, diabetes mellitus, secondary metastasis, smoking, a
... Show MoreBackground: Determination of local bone mineral density (BMD) with cortical thickness and bone height may offer a comprehensive description of the bone the surgeon will encounter when he or she actually sets the implant. Quantitative computed tomography (CT) (i.e., quantitative interpretation of values derived from Hounsfield units with a suitable calibration procedure) is the modality of choice to determine BMD. The aim of the present clinical study is to determine the local bone density in dental implant recipient sites using computerized tomography. Material and method: The sample consisted of (72) Iraqi patients whom referred to Al-Kharkh General hospital, Spiral CT scan Department for bone quality and quantity assessment after one wee
... Show MoreComposite materials are widely used in the engineered assets as aerospace structures, marine and air navigation owing to their high strength/weight ratios. Detection and identification of damage in the composite structures are considered as an important part of monitoring and repairing of structural systems during the service to avoid instantaneous failure. Effective cost and reliability are essential during the process of detecting. The Lamb wave method is an effective and sensitive technique to tiny damage and can be applied for structural health monitoring using low energy sensors; it can provide good information about the condition of the structure during its operation by analyzing the propagation of the wave in the
... Show More