In this work, microbubble dispersed air flotation technique was applied for cadmium ions removal from wastewater aqueous solution. Experiments parameters such as pH (3, 4, 5, and 6), initial Cd(II) ions concentration (40, 80, and 120 mg/l) contact time( 2, 5, 10 , 15, and 20min), and surfactant (10, 20and 40mg/l) were studied in order to optimize the best conditions .The experimental results indicate that microbubbles were quite effective in removing cadmium ions and the anionic surfactant SDS was found to be more efficient than cationic CTAB in flotation process. 92.3% maximum removal efficiency achieved through 15min at pH 5, SDS surfactant concentration 20mg/l, flow rate250 cm3/min and at 40mg/l Cd(II) ions initial concentration. The removal efficiency of cadmium ion was predicted through 11 neurons hidden layer, with a correlation coefficient of 0.9997 between ANN outputs and the experimental data and through sensitivity analysis, pH was found to be most significant parameter (25.13 %).The kinetic flotation order for cadmium ions almost first order and the removal rate constant (k) increases with decreasing the initial metal concentration.
Lung cancer is one of the most serious and prevalent diseases, causing many deaths each year. Though CT scan images are mostly used in the diagnosis of cancer, the assessment of scans is an error-prone and time-consuming task. Machine learning and AI-based models can identify and classify types of lung cancer quite accurately, which helps in the early-stage detection of lung cancer that can increase the survival rate. In this paper, Convolutional Neural Network is used to classify Adenocarcinoma, squamous cell carcinoma and normal case CT scan images from the Chest CT Scan Images Dataset using different combinations of hidden layers and parameters in CNN models. The proposed model was trained on 1000 CT Scan Images of cancerous and non-c
... Show MoreThe addition of new reactive sites on the surface area of the inert sand, which are represented by layered double hydroxide nanoparticles, is the primary goal of this work, which aims to transform the sand into a reactive material. Cetyltrimethylammonium bromide (CTAB) surfactant is used in the reaction of calcium extracted from solid waste-chicken eggshells with aluminum prepared from the cheapest coagulant-alum. By separating amoxicillin from wastewater, the performance of coated sand named as "sand coated with (Ca/Al-CTAB)-LDH" was evaluated. Measurements demonstrated that pH of 12 from 8, 9, 10, 11, and 12, CTAB dosage of 0.05 g from 0, 0.03, 0.05, and 0.1 g, ratio of Ca/Al of 2 from 1, 2, 3, and 4, and mass of sand of 1 g/50 mL from
... Show MoreThe present work describes the adsorption of Ba2+ and Mg2+ions from aqueous solutions by activated alumina in single and binary system using batch adsorption. The effect of different parameters such as amount of alumina, concentration of metal ions, pH of solution, contact time and agitation speed on the adsorption process was studied. The optimum adsorbent dosage was found to be 0.5 g and 1.5 g for removal of Ba2+ and Mg2+, respectively. The optimum pH, contact time and agitation speed, were found to be pH 6, 2h and 300 rpm, respectively, for removal of both metal ions. The equilibrium data were analyzed by Langmuir and Freundlich isotherm models and the data fitted well to both isotherm modes as indicated by higher correlation of deter
... Show MoreThe paper present design of a control structure that enables integration of a Kinematic neural controller for trajectory tracking of a nonholonomic differential two wheeled mobile robot, then proposes a Kinematic neural controller to direct a National Instrument mobile robot (NI Mobile Robot). The controller is to make the actual velocity of the wheeled mobile robot close the required velocity by guarantees that the trajectory tracking mean squire error converges at minimum tracking error. The proposed tracking control system consists of two layers; The first layer is a multi-layer perceptron neural network system that controls the mobile robot to track the required path , The second layer is an optimization layer ,which is impleme
... Show MoreImitation learning is an effective method for training an autonomous agent to accomplish a task by imitating expert behaviors in their demonstrations. However, traditional imitation learning methods require a large number of expert demonstrations in order to learn a complex behavior. Such a disadvantage has limited the potential of imitation learning in complex tasks where the expert demonstrations are not sufficient. In order to address the problem, we propose a Generative Adversarial Network-based model which is designed to learn optimal policies using only a single demonstration. The proposed model is evaluated on two simulated tasks in comparison with other methods. The results show that our proposed model is capable of completing co
... Show MoreViscosity (η) of solutions of 1-butanol, sec-butanol, isobutanol and tert-butanol were investigated in aqueous solution structures of ranged composition from 0.55 to 1 mol.dm-3 at 298.15 K. The data of (η/η˳) were evaluated based on reduced Jone - Dole equation; η/η˳ =BC+1. In the term of B value, the consequences based on solute-solvent interaction in aqueous solutions of alcohols were deliberated. The outcomes of this paper discloses that alcohols act as structure producers in the water. Additionally, it has shown that solute-solvent with interacting activity of identical magnitude is in water-alcohol system