In this work, microbubble dispersed air flotation technique was applied for cadmium ions removal from wastewater aqueous solution. Experiments parameters such as pH (3, 4, 5, and 6), initial Cd(II) ions concentration (40, 80, and 120 mg/l) contact time( 2, 5, 10 , 15, and 20min), and surfactant (10, 20and 40mg/l) were studied in order to optimize the best conditions .The experimental results indicate that microbubbles were quite effective in removing cadmium ions and the anionic surfactant SDS was found to be more efficient than cationic CTAB in flotation process. 92.3% maximum removal efficiency achieved through 15min at pH 5, SDS surfactant concentration 20mg/l, flow rate250 cm3/min and at 40mg/l Cd(II) ions initial concentration. The removal efficiency of cadmium ion was predicted through 11 neurons hidden layer, with a correlation coefficient of 0.9997 between ANN outputs and the experimental data and through sensitivity analysis, pH was found to be most significant parameter (25.13 %).The kinetic flotation order for cadmium ions almost first order and the removal rate constant (k) increases with decreasing the initial metal concentration.
Hepatitis is one of the diseases that has become more developed in recent years in terms of the high number of infections. Hepatitis causes inflammation that destroys liver cells, and it occurs as a result of viruses, bacteria, blood transfusions, and others. There are five types of hepatitis viruses, which are (A, B, C, D, E) according to their severity. The disease varies by type. Accurate and early diagnosis is the best way to prevent disease, as it allows infected people to take preventive steps so that they do not transmit the difference to other people, and diagnosis using artificial intelligence gives an accurate and rapid diagnostic result. Where the analytical method of the data relied on the radial basis network to diagnose the
... Show MoreThis study aims to reveal the role of one of the artificial intelligence (AI) techniques, “ChatGPT,” in improving the educational process by following it as a teaching method for the subject of automatic analysis for students of the Chemistry Department and the subject of computer security for students of the Computer Science Department, from the fourth stage at the College of Education for Pure Science (Ibn Al-Haitham), and its impact on their computational thinking to have a good educational environment. The experimental approach was used, and the research samples were chosen intentionally by the research community. Research tools were prepared, which included a scale for CT that included 12 items and the achievement test in b
... Show MoreCoupling reaction of m-and p- amino acetop henone and p-amino benzoic acid with (LHistidine) gave the new bidentate azo ligands (L1, L2 and L3). The prepared ligands were identified by FT-IR, UV-Vis, 1HNMR and GC- mass sp ectroscopic technique. Treatment of the prepared ligands with the following metal ions (CoII, NiII, CuII, ZnII, CdII and HgII) in aqueous ethanol with a 1:2 M:L ratio and at optimum pH, yielded a series of neutral complexes of the general formula [M (L)2 Cl2]. The prepared complexes were characterized by using flame atomic absorption, FT-IR, UV-Vis and 1HNMR spectroscopic methods as well as magnetic susceptibility and conductivity measurements. Chloride ion content was also evaluated by (Mohr method). The nature of the com
... Show MoreArtificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le
... Show MoreArtificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le
... Show MoreWater supply and distribution networks play an important role in our daily activities. They make a substantial contribution to public health by providing potable water for public consumption and non-potable applications such as firefighters and other purposes such as irrigation. This study used ArcMap 10.8 and WaterGEMS CONNECT Edition update 1 version to create a hydraulic network model to simulate the pipes’ network. Detailed network information, including pipe lengths, layouts, and diameters, was given by the Baghdad Water Department. The TUF-2000H Handheld digital ultrasonic flow meter has been used to measure the water flows in the network’s source nodes. In eight junctions,