In this work, microbubble dispersed air flotation technique was applied for cadmium ions removal from wastewater aqueous solution. Experiments parameters such as pH (3, 4, 5, and 6), initial Cd(II) ions concentration (40, 80, and 120 mg/l) contact time( 2, 5, 10 , 15, and 20min), and surfactant (10, 20and 40mg/l) were studied in order to optimize the best conditions .The experimental results indicate that microbubbles were quite effective in removing cadmium ions and the anionic surfactant SDS was found to be more efficient than cationic CTAB in flotation process. 92.3% maximum removal efficiency achieved through 15min at pH 5, SDS surfactant concentration 20mg/l, flow rate250 cm3/min and at 40mg/l Cd(II) ions initial concentration. The removal efficiency of cadmium ion was predicted through 11 neurons hidden layer, with a correlation coefficient of 0.9997 between ANN outputs and the experimental data and through sensitivity analysis, pH was found to be most significant parameter (25.13 %).The kinetic flotation order for cadmium ions almost first order and the removal rate constant (k) increases with decreasing the initial metal concentration.
in this paper fourth order kutta method has been used to find the numerical solution for different types of first liner
In this paper, we established a mathematical model of an SI1I2R epidemic disease with saturated incidence and general recovery functions of the first disease I1. Considering the basic reproduction number, we obtained conditions for both disease-free and co-existing cases. The equilibrium points local stability is verified by using the Routh-Hurwitz criterion, while for the global stability, we used a suitable Lyapunov function to analyze the endemic spread of the positive equilibrium point. Moreover, we carried out the local bifurcation around both equilibrium points (disease-free and co-existing), where we obtained that the disease-free equilibrium point undergoes a transcritical bifurcation. We conduct numerical simulations that suppo
... Show MoreThe results of theoretical and experimental investigations carried out to study the effect of load and relative sliding speed on the abrasive wear behavior in drilling bit teeth surfaces of an insert tungsten carbide bit have been presented. Experimentally, an apparatus for abrasive wear tests conducted on the modified ASTM-G65 was modified and fabricated to facilitate loading and measurement of wear rate for the sand/ steel wheel abrasion test, which involves two cases of contact; first is at dry sand and second is under wet condition. These tests have been carried under varied operating parameters of normal load and sliding speed. A theoretical model based upon the Archard equation has been developed for predicting wear simulation by u
... Show MoreIn Iraq most of the small buildings deployed a conventional air conditioning technology which typically uses electrically driven compressor systems which exhibits several clear disadvantages such as high energy consumption, high electricity at peak loads. In this work a thermal performance of air conditioning system combined with a solar collector is investigated theoretically. The hybrid air conditioner consists of a semi hermetic compressor, water cooled shell and tube condenser, thermal expansion valve and coil with tank evaporator. The theoretical analysis included a simulation for the solar assisted air-conditioning system using EES software to analyze the effect of different parameters on the power consumption of c
... Show More