In this research Epoxy resin was reinforced by nano alumina (AL2O3) particles in grain size(25-30 nm) with two weight ratios (2,4)% then compared with pure Epoxy. Four mechanical tests were performed on these materials include Hardness, flexural, impact & compression strengths before and after immersion in tap water and chemical solutions (CH3COOH) acid, (KOH) base at (0.5N) ,The diffusivity coefficients of all prepared samples were calculate after immersion in water and chemical solutions mentioned above , the results were showed that the Flexural, Impact & Hardness increase after addition the ceramic particles (AL2O3) while the immersion process results showed illustrated different values from sample to other.
Briefly the term of cyber security is a bunch of operations and procedures working on insurance and protecting the network, computer devices, the programs and data from attack and from damaging penetration, also from breaking, abstraction and disturbing in spite of the fact that the concept of cyber conflict is got widening. So, the needs arise in the state to secure cyberspace and protect it by several methods to confront the electronic intrusions and threats which is known as cyber security. Countries seek to preserve its national security in particular the United States of America after the events of September 11 ,2001. In addition, the United States follow all ways to take over cyber threats.
In this work we study the influence of the laser pulse energy and ablation time on the aluminum nanoparticles productivity during nanosecond laser ablation of bulk aluminum immersed in liquid.
Aluminum nanoparticles were synthesized by pulsed laser ablation of Al targets in ethanol for 3-8 minutes using the 1064 nm wavelength of a Nd:YAG laser with energies of 300-500 mJ per pulse.The laser energy was varied between 300 and 500 mJ/pulse, whereas the ablation time was set to 5 minutes. UV-Visible absorption spectra was used for the characterization and comparison of products.
Zinc sulfide (ZnS) thin films were deposited on glass substrates using pulsed laser deposition technique. The laser used is the Q-switched Nd: YAG laser with 1064nm wavelength and 1Hz pulse repetition rate and varying laser energy 700mJ-1000mJ with 25 pulse. The substrate temperature was kept constant at 100°C. The structural, morphological and optical properties of ZnS thin films were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscope (AFM) and UV-VIS spectrophotometer.
Spray pyrolysis technique (SPT) is employed to synthesize cadmium oxide nanostructure with 3% and 5% Cobalt concentrations. Films are deposited on a glass substrate at 350 ᵒC with 150 nm thickness. The XRD analysis revealed a polycrystalline nature with cubic structure and (111) preferred orientation. Structural parameters represent lattice spacing, crystallite size, lattice parameter and dislocation density. Homogeneous surfaces and regular distribution of atoms were showed by atomic force microscope (AFM) with 1.03 nm average roughness and 1.22 nm root mean square roughness. Optical properties illustrated a high transmittance more than 85% in the range of visible spectrum and decreased with Co concentration increasing. The absorption
... Show More