
The development of a new, cheap, efficient, and ecofriendly adsorbents has become an important demand for the treatment of waste water, so nano silica is considered a good choice. A sample of nanosilica (NS) was prepared from sodium silicate as precursor and the nonionic surfactant Tween 20 as a template. The prepared sample was characterized using various characterization techniques such as FT-IR, AFM, SEM and EDX analysis. The spectrum of FTIR confirms the presence of silica in the sample, while SEM analysis of sample shows nanostructures with pore ranging (2-100nm).The adsorptive properties of this sample were studied by removing Congo red dye (CR) from aqueous solution. Batch experimental methods were carried o
... Show MoreThis work was carried to study the capability of activated alumina from bauxite compared with activated carbon adsorption capability to reduce the color content from Al-Hilla Textile Company wastewater. Six dyes were studied from two types(reactive and dispersed) namely (blue, red, yellow) from wastewater and aqueous solutions.
Forty eight experiments were carried out to study the effect of various initial conditions (bed height, flow rate, initial concentration, pH value, temperature, and competitive adsorption) on adsorption process.
The results showed that the adsorption process using activated carbon insured a good degree of color reduction reaching (99.7%) and was better than activated bauxite which reached (95%).
The preparation of composite metal oxide to attain high efficiency in removing phenol from wastewater has a great concern. In the present study, the focus would be on adopting antimony-tin oxide coating onto graphite substrates instead of titanium; besides the effect of SbCl3 concentration on the SnO2-Sb2O3 composite would be examined. The performance of this composite electrode as the working electrode in the removal of phenol by sonoelectrochemical oxidation will be studied. The antimony-tin dioxide composite electrode was prepared by cathodic deposition with SnCl2 . 2H2O solution in a mixture of HNO3 and NaNO3, with different concentrations of SbCl3. The SnO2-Sb2O3 deposit layer’s structure and morphology were examined and the 4 g/l Sb
... Show MoreModified algae with nano copper oxide (CuO) were used as adsorption media to remove tetracycline (TEC) from aqueous solutions. Functional groups, morphology, structure, and percentages of surfactants before and after adsorption were characterised through Fourier-transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). Several variables, including pH, connection time, dosage, initial concentrations, and temperature, were controlled to obtain the optimum condition. Thermodynamic studies, adsorption isotherm, and kinetics models were examined to describe and recognise the type of interactions involved. Resultantly, the best operation conditions were at pH 7, contact time
... Show MoreCladophora and Spirulina algae biomass have been used for the removal of Tetracycline (TC) antibiotic from aqueous solution. Different operation conditions were varied in batch process, such as initial antibiotic concentration, different biomass dosage and type, contact time, agitation speed, and initial pH. The result showed that the maximum removal efficiencies by using 1.25 g/100 ml Cladophora and 0.5 g/100 ml Spirulina algae biomass were 95% and 94% respectively. At the optimum experimental condition of temperature 25°C, initial TC concentration 50 mg/l, contact time 2.5hr, agitation speed 200 rpm and pH 6.5. The characterization of Cladophora and Spirulina biomass by Fourier transform infrared (FTIR) indicates that the presenc
... Show MoreModified algae with nano copper oxide (CuO) were used as adsorption media to remove tetracycline (TEC) from aqueous solutions. Functional groups, morphology, structure, and percentages of surfactants before and after adsorption were characterised through Fourier-transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). Several variables, including pH, connection time, dosage, initial concentrations, and temperature, were controlled to obtain the optimum condition. Thermodynamic studies, adsorption isotherm, and kinetics models were examined to describe and recognise the type of interactions involved. Resultantly, the best operation conditions were at pH 7, contact time
... Show MoreCorncob is an agricultural biomass waste that was widely investigated as an adsorbent of contaminants after transforming it into activated carbon. In this research carbonization and chemical activation processes were achieved to synthesize corncob-activated carbon (CAC). Many pretreatment steps including crushing, grinding, and drying to obtain corncob powder were performed before the carbonization step. The carbonization of corncob powder has occurred in the absence of air at a temperature of 500 °C. The chemical activation was accomplished by using HCl as an acidic activation agent. Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer–Emmett–Teller (BET) facilitate
... Show MoreThis study aims to assess the water quality index (WQI) according to the Canadian Council of Ministers of the Environment's Water Quality Index method (CCME WQI). Four locations (measurement stations) are selected along the Tigris River, in Iraq. Two of them are located in the north near Mosul City, (Mosul Dam and Mosul city), and the other two are located in the south near Al-Amarah city, (Ali Garbi and Al-Amarah). The water data collected is for the period 2011 to 2013, including eleven water quality parameters. These are magnesium (Mg+2), calcium (Ca2+), potassium (K+), sodium (Na+), sulfate (SO42-), chloride (Cl-), nitrate (NO3<
... Show MoreOne of the most important problems in concrete production in Iraq and other country is the high sulfate content in sand that led to damage of concrete and hence reduces its compressive strength and may leads to cracking due to internal sulfate attack and delay ettringite formation. The magnetic water treatment process is adopted in this study. Many samples with different SO3 content are treated with magnetic water (12, 8, 4 and 2)L that needed for each 1kg of sand with the magnetic intensity (9000 and 5000) Gaus. The magnetic water needed is reduced with less SO3 content in sand. The ACI 211.1-91 concrete mix design was used in this research with slump range (75- 100) mm and the specified compressive strength (35MPa). The compressive streng
... Show More