The sorption of Cu2+ ions from synthetic wastewater using crushed concrete demolition waste (CCDW) which collected from a demolition site was investigated in a batch sorption system. Factors influencing on sorption process such as shaking time (0-300min), the initial concentration of contaminant (100-750mg/L), shaking speed (0-250 rpm), and adsorbent dosage (0.05-3 g/ml) have been studied. Batch experiments confirmed that the best values of these parameters were (180 min, 100 mg/l, 250 rpm, 0.7 g CCDW/100 ml) respectively where the achieved removal efficiency is equal to 100%. Sorption data were described using four isotherm models (Langmuir, Freundlich, Redlich-Peterson, and Radke-Prausnitz). Results proved that the pure adsorption and precipitation are the main mechanisms for removal of copper ions from aqueous solution onto CCDW and sorption data can be represented by Langmuir and Radke-Prausnitz model. The copper ion was successfully removed from aqueous solution during batch experiments using CCDW in the particle size range 2–1 mm. Scanning electron microscopy detected that the removal of Cu2+ was found to arise from surface precipitation.
Concrete filled steel tube (CFST) columns are being popular in civil engineering due to their superior structural characteristics. This paper investigates enhancement in axial behavior of CFST columns by adding steel fibers to plain concrete that infill steel tubes. Four specimens were prepared: two square columns (100*100 mm) and two circular columns (100 mm in diameter). All columns were 60 cm in length. Plain concrete mix and concrete reinforced with steel fibers were used to infill steel tube columns. Ultimate axial load capacity, ductility and failure mode are discussed in this study. The results showed that the ultimate axial load capacity of CFST columns reinforced with steel fibers increased by 28% and 20 % for circular and square c
... Show MoreThe utilization and incorporation of glass fiber-reinforced plastics (GFRP) in structural applications and architectural constructions are progressively gaining prominence. Therefore, this paper experimentally and numerically investigates the use of GFRP I-beams in conjunction with concrete slabs to form composite beams. The experimental design incorporated 2600 mm long GFRP I-beams which were connected compositely to concrete slabs with a 500 mm width and 80 mm thickness. The concrete slabs are categorized into two groups: concrete slabs cast using normal-strength concrete (NSC), and concrete slabs prepared using high-strength concrete (HSC). Various parameters like the type of concrete (normal and high-strength concrete), type of
... Show MoreCarbon fiber reinforced polymers (CFRP) were widely used in strengthening reinforced concrete members
in the last few years, these fibers consist mainly of high strength fibers which increase the member capacity in addition to changing the mode of failure of the reinforced concrete beams. Experimental and theoretical investigations were carried to find the behavior of reinforced concrete beams strengthened by CFRP in shear and bending. The experimental work included testing of 12 beams divided into 4 groups; each group contains 3 beams. The following parameters were taken into consideration: - Concrete crushing strength. - CFRP strengthening location (shear strengthening and both shear and flexure strengthening). Reinforced beams were
Normal concrete is weak against tensile strength, has low ductility, and also insignificant resistance to cracking. The addition of diverse types of fibers at specific proportions can enhance the mechanical properties as well as the durability of concrete. Discrete fiber commonly used, has many disadvantages such as balling the fiber, randomly distribution, and limitation of the Vf ratio used. Based on this vision, a new technic was discovered enhancing concrete by textile-fiber to avoid all the problems mentioned above. The main idea of this paper is the investigation of the mechanical properties of SCC, and SCM that cast with 3D AR-glass fabric having two different thicknesses (6, 10 mm), and different layers (1,2 laye
... Show MoreCurrent numerical research was devoted to investigating the effect of castellated steel beams without and with strengthening. The composite concrete asymmetrical double hot rolled steel channels bolted back to back to obtain a built-up I-shape form are used in this study. The top half part of the steel is smaller than the bottom half part, and the two parts were connected by bolting and welding. The ABAQUS/2019 program employed the same length and conditions of loading for four models: The first model is the reference without castellated and strengthening; the second model was castellated without strengthened; the third model was castellated and strengthened with reactive powder concrete encased in the
... Show MoreThis paper presents an analytical study on the serviceability of reinforced concrete gable roof beams with openings of different sizes, based on an experimental study which includes 13 concrete gable roof beams with openings under static loading. For deflection and crack widths under static loading at service stage, a developed unified calculation procedure has been submitted, which includes prismatic beams with one opening subjected to flexure concentrated force. The deflection has been calculated with two methods: the first method calculated deflections via relevant equations and the second was Direct Stiffness Method in which the beam is treated as a structural member with several segments constituting the portions with solid sec
... Show MoreThe present study experimentally and numerically investigated the impact behavior of composite reinforced concrete (RC) beams with the pultruded I-GFRP and I-steel beams. Eight specimens of two groups were cast in different configurations. The first group consisted of four specimens and was tested under static load to provide reference results for the second group. The four specimens in the second group were tested first under impact loading and then static loading to determine the residual static strengths of the impacted specimens. The test variables considered the type of encased I-section (steel and GFRP), presence of shear connectors, and drop height during impact tests. A mass of 42.5 kg was dropped on the top surface at the m
... Show MoreThis research was aimed to study the exposure of Razzazah Lake to major hydrological changes in recent years as a result of natural climatic changes and drought, high evaporation in lake due to stop discharge from Habbaniyah Lake by Al- majera channel. During 2019, we collected surface water samples at three locations, and three samples from groundwater, in addition one samples from each location Imam Ali Drop and Sewage water of Karbala. The Results show that the heavy isotopes in lake and groundwater well are enriched during the warm period, and depleted during the cold period. Chemically, The dominant cations and anions in Al-Razzaza lake water are mainly of in Order Ca > Na > Mg and Cl>SO4 and the water
... Show More