Fracture pressure gradient prediction is complementary in well design and it is must be considered in selecting the safe mud weight, cement design, and determine the optimal casing seat to minimize the common drilling problems. The exact fracture pressure gradient value obtained from tests on the well while drilling such as leak-off test, formation integrity test, cement squeeze ... etc.; however, to minimize the total cost of drilling, there are several methods could be used to calculate fracture pressure gradient classified into two groups: the first one depend on Poisson’s ratio of the rocks and the second is fully empirical methods. In this research, the methods selected are Huubert and willis, Cesaroni I, Cesaroni II, Cesaroni III, Eaton, and Daines where Poisson’s ratio is considered essential here and the empirical methods selected are Matthews and Kelly and Christman. The results of these methods give an approximately match with the previous field study which has been relied upon in drilling the previous wells in the field and Cesaroni I is selected to be the equation that represents the field under study in general. In the shallower formations, Cesaroni I is the best method; while in deepest formations, Eaton, Christman, and Cesaroni I are given a good and approximately matching. The fracture pressure gradient of Halfaya oilfield range is (0.98 to 1.03) psi/ft.
The permeability determination in the reservoirs that are anisotropic and heterogeneous is a complicated problem due to the limited number of wells that contain core samples and well test data. This paper presents hydraulic flow units and flow zone indicator for predicting permeability of rock mass from core for Nahr-Umr reservoir/ Subba field. The Permeability measurement is better found in the laboratory work on the cored rock that taken from the formation. Nahr-Umr Formation is the main lower cretaceous sandstone reservoir in southern of Iraq. This formation is made up mainly of sandstone. Nahr-Umr formation was deposited on a gradually rising basin floor. The digenesis of Nahr-Umr sediments is very important du
... Show MoreThe evolution in the field of Artificial Intelligent (AI) with its training algorithms make AI very important in different aspect of the life. The prediction problem of behavior of dynamical control system is one of the most important issue that the AI can be employed to solve it. In this paper, a Convolutional Multi-Spike Neural Network (CMSNN) is proposed as smart system to predict the response of nonlinear dynamical systems. The proposed structure mixed the advantages of Convolutional Neural Network (CNN) with Multi -Spike Neural Network (MSNN) to generate the smart structure. The CMSNN has the capability of training weights based on a proposed training algorithm. The simulation results demonstrated that the proposed
... Show MoreThe current research aimed to identify the level of moral identity and social affiliation among students exposed to shock pressures, as well as to reveal the relationship between these variables. To achieve these objectives, the researcher adopted the diagnostic tool for the measure of post-traumatic stress disorder (PDS-5) scale (Foa, 2013) translated to Arabic language by (Imran, 2017). The researcher also adopted the moral identity scale built by (Al-Bayati, 2015) and the measure of social affiliation built by (Al-Jashami, 2013), which were applied to a random sample of (200) male and female students chose from al Anbar University. They were exposed to shock pressures. The results of the research showed that the sample has an average
... Show MoreEmpirical and statistical methodologies have been established to acquire accurate permeability identification and reservoir characterization, based on the rock type and reservoir performance. The identification of rock facies is usually done by either using core analysis to visually interpret lithofacies or indirectly based on well-log data. The use of well-log data for traditional facies prediction is characterized by uncertainties and can be time-consuming, particularly when working with large datasets. Thus, Machine Learning can be used to predict patterns more efficiently when applied to large data. Taking into account the electrofacies distribution, this work was conducted to predict permeability for the four wells, FH1, FH2, F
... Show MoreThe research utilizes data produced by the Local Urban Management Directorate in Najaf and the imagery data from the Landsat 9 satellite, after being processed by the GIS tool. The research follows a descriptive and analytical approach; we integrated the Markov chain analysis and the cellular automation approach to predict transformations in city structure as a result of changes in land utilization. The research also aims to identify approaches to detect post-classification transformations in order to determine changes in land utilization. To predict the future land utilization in the city of Kufa, and to evaluate data accuracy, we used the Kappa Indicator to determine the potential applicability of the probability matrix that resulted from
... Show MoreBackground: There is a strong desire of adolescent to have a peer group and to be appreciated and also to become a member of this group which can affect one each other. There for; encourage, adapting,and imitating of friends and group consider as the main reasons behind starting of smoking among youngsters. Smoking habits in the family were found tobe acause of smoking pressure among adolescentas peer pressure. Smoking habit may be started before 18 years of age in most adult smokers.
Objectives: To study the effect of peer pressure and family smoking habiton the prevalence of smoking among secondary school students.
Type of the study: A cross
... Show MoreAbstract
A surface fitting model is developed based on calorimeter data for two famous brands of household compressors. Correlation equations of ten coefficient polynomials were found as a function of refrigerant saturating and evaporating temperatures in range of (-35℃ to -10℃) using Matlab software for cooling capacity, power consumption, and refrigerant mass flow rate.
Additional correlations equations for these variables as a quick choice selection for a proper compressor use at ASHRAE standard that cover a range of swept volume range (2.24-11.15) cm3.
The result indicated that these surface fitting models are accurate with in ± 15% for 72 compressors model of cooling cap
... Show MoreSodium adsorption ratio (SAR) is considered as a measure of the water suitability for irrigation usage. This study examines the effect of the physicochemical parameters on water quality and SAR, which included Calcium(Ca+2), Magnesium(Mg+2), Sodium (Na+), Potassium (K), Chloride (Cl-), Sulfate(SO4-2), Carbonate (CO3-2), Bicarbonate (HCO3-), Nitrate (NO3-), Total Hardness (TH), Total Dissolved Salts (TDS), Electrical Conductivity (EC), degree of reaction (DR), Boron (B) and the monthly and annually flow discharge (Q). The water samples were collected from three stations across the Tigris River in Iraq, which flows through Samarra city (upstream), Baghdad city (central) and the end of Kut city (downstream) for the periods of 2016-201
... Show MoreDeep learning (DL) plays a significant role in several tasks, especially classification and prediction. Classification tasks can be efficiently achieved via convolutional neural networks (CNN) with a huge dataset, while recurrent neural networks (RNN) can perform prediction tasks due to their ability to remember time series data. In this paper, three models have been proposed to certify the evaluation track for classification and prediction tasks associated with four datasets (two for each task). These models are CNN and RNN, which include two models (Long Short Term Memory (LSTM)) and GRU (Gated Recurrent Unit). Each model is employed to work consequently over the two mentioned tasks to draw a road map of deep learning mod
... Show More